26 research outputs found

    Correlation between Fischer-Tropsch catalytic activity and composition of catalysts

    Get PDF
    This paper presents the synthesis and characterization of monometallic and bimetallic cobalt and iron nanoparticles supported on alumina. The catalysts were prepared by a wet impregnation method. Samples were characterized using temperature-programmed reduction (TPR), temperature-programmed oxidation (TPO), CO-chemisorption, transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM-EDX) and N2-adsorption analysis. Fischer-Tropsch synthesis (FTS) was carried out in a fixed-bed microreactor at 543 K and 1 atm, with H2/CO = 2 v/v and space velocity, SV = 12L/g.h. The physicochemical properties and the FTS activity of the bimetallic catalysts were analyzed and compared with those of monometallic cobalt and iron catalysts at similar operating conditions

    Formation of H2 and CH4 by weathering of olivine at temperatures between 30 and 70°C

    Get PDF
    Hydrocarbons such as CH4 are known to be formed through the Fischer-Tropsch or Sabatier type reactions in hydrothermal systems usually at temperatures above 100°C. Weathering of olivine is sometimes suggested to account for abiotic formation of CH4 through its redox lowering and water splitting properties. Knowledge about the CH4 and H2 formation processes at low temperatures is important for the research about the origin and cause of early Earth and Martian CH4 and for CO2 sequestration. We have conducted a series of low temperature, long-term weathering experiments in which we have tested the CH4 and H2 formation potential of forsteritic olivine

    Characterization of Mo additions in iron-based Fischer-Tropsch catalysts using X-ray absorption spectroscopy and X-ray diffraction

    No full text
    An iron-based Fischer-Tropsch catalyst with a low concentration of molybdenum (90Fe/10Mo/5Cu/17Si) used as a promoter was characterized by X-ray absorption spectroscopy (XAS) and X-ray diffractometry (XRD). The catalyst was prepared using coprecipitation, pretreated in CO, then one sample passivated and one calcined. The XRD data show that after CO pretreatment the calcined and passivated catalysts are almost amorphous with respect to Fe O with nanoparticle size of 10 and 100 Å for Fe C (only present in the passivated sample). Least squares fitting of the XANES region show that the calcined and passivated samples were similar in the bulk and surface structures, with the calcined samples completely oxidized. As expected, K and L edges Mo-XANES shows only small molybdenum carbide formation compared to iron carbide. © 2007 Elsevier B.V. All rights reserved. 2 3 3 II

    Effect of K promoter on the structure and catalytic behavior of supported iron-based catalysts in fischer-tropsch synthesis

    No full text
    Effects of K addition on the performance of supported Fe catalysts for Fischer - Tropsch synthesis (FTS) were studied in a slurry reactor at 240 to 270ºC, 2.0 to 4.0 MPa and syngas H2/CO = 1.0. The catalysts were characterized by N2 adsorption, H2 temperature programmed reduction, X - ray diffraction, X - ray fluorescence, thermogravimetric analysis, scanning electron microscopy and dispersive X - ray spectroscopy. A strong interaction was observed between Fe and K, which inhibited the reduction of Fe catalyst. Addition of potassium increased the production of heavy hydrocarbons (C20+)
    corecore