6,445 research outputs found

    Vlasov Description Of Dense Quark Matter

    Get PDF
    We discuss properties of quark matter at finite baryon densities and zero temperature in a Vlasov approach. We use a screened interquark Richardson's potential consistent with the indications of Lattice QCD calculations. We analyze the choices of the quark masses and the parameters entering the potential which reproduce the binding energy (B.E.) of infinite nuclear matter. There is a transition from nuclear to quark matter at densities 5 times above normal nuclear matter density. The transition could be revealed from the determination of the position of the shifted meson masses in dense baryonic matter. A scaling form of the meson masses in dense matter is given.Comment: 15 pages 4 figure

    Microminiaturized, biopotential conditioning system (MBCS)

    Get PDF
    Multichannel, medical monitoring system allows almost complete freedom of movement for subject during monitoring periods. System comprises monitoring unit (biobelt), transmission line, and data acquisition unit. Belt, made of polybenzimidizole fabric, is wrapped around individual's waist and held in place by overlapping sections of Velcro closure material

    Drymus brunneus (Sahlberg) (Hemiptera: Rhyparochromidae): a seed bug introduced into North America

    Get PDF
    The occurrence of the adventive Drymus brunneus (Sahlberg) in North America is documented, and characteristics to distinguish this Old World species from D. unus (Say) are described and illustrated. A revised key to the Western Hemisphere species of Drymus is included

    A Constrained Path Quantum Monte Carlo Method for Fermion Ground States

    Full text link
    We propose a new quantum Monte Carlo algorithm to compute fermion ground-state properties. The ground state is projected from an initial wavefunction by a branching random walk in an over-complete basis space of Slater determinants. By constraining the determinants according to a trial wavefunction ΨT|\Psi_T \rangle, we remove the exponential decay of signal-to-noise ratio characteristic of the sign problem. The method is variational and is exact if ΨT|\Psi_T\rangle is exact. We report results on the two-dimensional Hubbard model up to size 16×1616\times 16, for various electron fillings and interaction strengths.Comment: uuencoded compressed postscript file. 5 pages with 1 figure. accepted by PRL

    Mystery of Excess Low Energy States in a Disordered Superconductor in a Zeeman Field

    Get PDF
    Tunneling density of states measurements of disordered superconducting (SC) Al films in high Zeeman fields reveal a significant population of subgap states which cannot be explained by standard BCS theory. We provide a natural explanation of these excess states in terms of a novel disordered Larkin-Ovchinnikov (dLO) phase that occurs near the spin-paramagnetic transition at the Chandrasekhar-Clogston critical field. The dLO superconductor is characterized by a pairing amplitude that changes sign at domain walls. These domain walls carry magnetization and support Andreev bound states, which lead to distinct spectral signatures at low energy.Comment: 5 pages, 4 figures, plus supplementary section describing methods (2 pages

    Efficient calculation of imaginary time displaced correlation functions in the projector auxiliary field quantum Monte-Carlo algorithm

    Full text link
    The calculation of imaginary time displaced correlation functions with the auxiliary field projector quantum Monte-Carlo algorithm provides valuable insight (such as spin and charge gaps) in the model under consideration. One of the authors and M. Imada [F.F. Assaad and M. Imada, J. Phys. Soc. Jpn. 65 189 (1996).] have proposed a numerically stable method to compute those quantities. Although precise this method is expensive in CPU time. Here, we present an alternative approach which is an order of magnitude quicker, just as precise, and very simple to implement. The method is based on the observation that for a given auxiliary field the equal time Green function matrix, GG, is a projector: G2=GG^2 = G.Comment: 4 papes, 1 figure in eps forma

    The Red-Sequence Luminosity Function in Galaxy Clusters since z~1

    Full text link
    We use a statistical sample of ~500 rich clusters taken from 72 square degrees of the Red-Sequence Cluster Survey (RCS-1) to study the evolution of ~30,000 red-sequence galaxies in clusters over the redshift range 0.35<z<0.95. We construct red-sequence luminosity functions (RSLFs) for a well-defined, homogeneously selected, richness limited sample. The RSLF at higher redshifts shows a deficit of faint red galaxies (to M_V=> -19.7) with their numbers increasing towards the present epoch. This is consistent with the `down-sizing` picture in which star-formation ended at earlier times for the most massive (luminous) galaxies and more recently for less massive (fainter) galaxies. We observe a richness dependence to the down-sizing effect in the sense that, at a given redshift, the drop-off of faint red galaxies is greater for poorer (less massive) clusters, suggesting that star-formation ended earlier for galaxies in more massive clusters. The decrease in faint red-sequence galaxies is accompanied by an increase in faint blue galaxies, implying that the process responsible for this evolution of faint galaxies is the termination of star-formation, possibly with little or no need for merging. At the bright end, we also see an increase in the number of blue galaxies with increasing redshift, suggesting that termination of star-formation in higher mass galaxies may also be an important formation mechanism for higher mass ellipticals. By comparing with a low-redshift Abell Cluster sample, we find that the down-sizing trend seen within RCS-1 has continued to the local universe.Comment: ApJ accepted. 11 pages, 5 figure

    Coulomb blockade and quantum tunnelling in the low-conductivity phase of granular metals

    Full text link
    We study the effects of Coulomb interaction and inter-grain quantum tunnelling in an array of metallic grains using the phase-functional approach for temperatures TT well below the charging energy EcE_{c} of individual grains yet large compared to the level spacing in the grains. When the inter-grain tunnelling conductance g1g\gg1, the conductivity σ\sigma in dd dimensions decreases logarithmically with temperature (σ/σ0112πgdln(gEc/T)\sigma/\sigma_{0}\sim1-\frac{1}{2\pi gd}\ln(gE_{c}/T)), while for g0g\to0, the conductivity shows simple activated behaviour (σexp(Ec/T)\sigma \sim \exp(-E_c/T)). We show, for bare tunnelling conductance g1g \gtrsim 1, that the parameter γg(12/(gπ)ln(gEc/T))\gamma \equiv g(1-2/(g\pi)\ln(gE_{c}/T)) determines the competition between charging and tunnelling effects. At low enough temperatures in the regime 1γ1/βEc1\gtrsim \gamma \gg 1/\sqrt{\beta E_{c}}, a charge is shared among a finite number N=(Ec/T)/ln(π/2γz)N=\sqrt{(E_{c}/T)/\ln(\pi/2\gamma z)} of grains, and we find a soft activation behaviour of the conductivity, σz1exp(2(Ec/T)ln(π/2γz))\sigma\sim z^{-1}\exp(-2\sqrt{(E_{c}/T)\ln(\pi/2\gamma z)}), where zz is the effective coordination number of a grain.Comment: 11 pages REVTeX, 3 Figures. Appendix added, replaced with published versio

    Theory of monolayers with boundaries: Exact results and Perturbative analysis

    Full text link
    Domains and bubbles in tilted phases of Langmuir monolayers contain a class of textures knows as boojums. The boundaries of such domains and bubbles may display either cusp-like features or indentations. We derive analytic expressions for the textures within domains and surrounding bubbles, and for the shapes of the boundaries of these regions. The derivation is perturbative in the deviation of the bounding curve from a circle. This method is not expected to be accurate when the boundary suffers large distortions, but it does provide important clues with regard to the influence of various energetic terms on the order-parameter texture and the shape of the domain or bubble bounding curve. We also look into the effects of thermal fluctuations, which include a sample-size-dependent effective line tension.Comment: replaced with published version, 21 pages, 16 figures include

    Photoemission spectra of many-polaron systems

    Full text link
    The cross over from low to high carrier densities in a many-polaron system is studied in the framework of the one-dimensional spinless Holstein model, using unbiased numerical methods. Combining a novel quantum Monte Carlo approach and exact diagonalization, accurate results for the single-particle spectrum and the electronic kinetic energy on fairly large systems are obtained. A detailed investigation of the quality of the Monte Carlo data is presented. In the physically most important adiabatic intermediate electron-phonon coupling regime, for which no analytical results are available, we observe a dissociation of polarons with increasing band filling, leading to normal metallic behavior, while for parameters favoring small polarons, no such density-driven changes occur. The present work points towards the inadequacy of single-polaron theories for a number of polaronic materials such as the manganites.Comment: 15 pages, 13 figures; final version, accepted for publication in Phys. Rev.
    corecore