320 research outputs found

    STM study of the atomic structure of the icosahedral Al-Cu-Fe fivefold surface

    Get PDF
    We use scanning tunneling microscopy (STM) to investigate the atomic structure of the icosahedral (i-) Al-Cu-Fe fivefold surface in ultra high vacuum (UHV). Studies show that large, atomically flat terraces feature many ten-petal “flowers” with internal structure. The observed flower patterns can be associated with features on Al rich dense atomic planes generated from two-dimensional cuts of bulk models based on x-ray and neutron diffraction experiments. The results confirm that the fivefold surface of i-Al-Cu-Fe corresponds to a bulk-terminated plane

    C60 adsorption on an aperiodically modulated Cu surface

    Get PDF
    Copper deposited on the ve-fold surface of icosahedral Al-Pd-Mn forms domains of a structure whose surface has a one-dimensional aperiodic modulation. It is shown that C60 deposited on this aperiodic film has highly reduced mobility as compared to C60 deposited on periodic Cu surfaces. This fnding is explained in terms of the recently proposed structural model of this system

    Magnetic and structural transitions in La0.4_{0.4}Na0.6_{0.6}Fe2_2As2_2 single crystals

    Get PDF
    La0.4_{0.4}Na0.6_{0.6}Fe2_2As2_2 single crystals have been grown out of an NaAs flux in an alumina crucible and characterized by measuring magnetic susceptibility, electrical resistivity, specific heat, as well as single crystal x-ray and neutron diffraction. La0.4_{0.4}Na0.6_{0.6}Fe2_2As2_2 single crystals show a structural phase transition from a high temperature tetragonal phase to a low-temperature orthorhombic phase at Ts_s\,=\,125\,K. This structural transition is accompanied by an anomaly in the temperature dependence of electrical resistivity, anisotropic magnetic susceptibility, and specific heat. Concomitant with the structural phase transition, the Fe moments order along the \emph{a} direction with an ordered moment of 0.7(1)\,μB\mu_{\textup{B}} at \emph{T}\,=\,5 K. The low temperature stripe antiferromagnetic structure is the same as that in other \emph{A}Fe2_{2}As2_{2} (\emph{A}\,=\,Ca, Sr, Ba) compounds. La0.5x_{0.5-x}Na0.5+x_{0.5+x}Fe2_2As2_2 provides a new material platform for the study of iron-based superconductors where the electron-hole asymmetry could be studied by simply varying La/Na ratio.Comment: 9 pages, 7 figures, to appear in Physical Review

    High Pressure studies of the magnetic phase transition in MnSi: revisited

    Get PDF
    New measurements of AC magnetic susceptibility and DC resistivity of a high quality single crystal MnSi were carried out at high pressure making use of helium as a pressure medium. The form of the AC magnetic susceptibility curves at the magnetic phase transition suddenly changes upon helium solidification. This implies strong sensitivity of magnetic properties of MnSi to non hydrostatic stresses and suggests that the early claims on the existence of a tricritical point at the phase transition line are probably a result of misinterpretation of the experimental data. At the same time resistivity behavior at the phase transition does not show such a significant influence of helium solidification. The sharp peak at the temperature derivative of resistivity, signifying the first order nature of the phase transition in MnSi successfully survived helium crystallization and continued the same way to the highest pressure.Comment: 4 pages, 6 figure

    Nucleation and growth of Ag films on a quasicrystalline AlPdMn surface

    Get PDF
    Nucleation and growth of thin films of Ag on the fivefold surface of an Al72Pd19.5Mn8.5 icosahedral quasicrystal is studied with scanning-tunneling microscopy. For low coverages, flux-independent island nucleation is observed involving adatom capture at “traps.” With increasing coverage, islands start growing vertically, but then spread, and ultimately form hexagonal nanocrystals. These have fcc symmetry and pyramidlike multilayer stacking along the 〈111〉 direction. The constituent hexagonal islands have five different orientations, rotated by 2π/5, thus reflecting the symmetry of the substrate

    Effects of Al and Fe solubility on the magnetofunctional properties of AlFe2B2

    Get PDF
    Bridgman single-crystal growth of AlFe2B2 resulted in systematic Fe-Al lattice site substitution in the AlFe2B2 (Mn2AlB2-type structure, aka 1−2−2) phase along the direction of solidification. The Fe:Al ratio varied from 1.94 to 2.06. The 1−2−2 phase lattice parameters, magnetic transition temperatures (Tt) 280−315 K, magnetic entropy changes (ΔS)2.3−4.0J/kgK, heat capacity (Cp) 117−147J/molK, and thermal conductivity (κ)∼2.4−11.5W/mK all varied monotonically across the region of solubility. These findings confirm the sensitivity of the magnetic and thermal properties of the AlFe2B2 compound to antisite defects. The interplay between Al and Fe lattice site occupancy and the resultant magnetic and electronic responses facilitates tailoring the properties of the AlFe2B2 system for potential functional applications, including magnetic cooling

    Two-dimensional magnetic interactions in LaFeAsO

    Get PDF
    Inelastic neutron scattering measurements demonstrate that the magnetic interactions in antiferromagnetic LaFeAsO are two dimensional. Spin-wave velocities within the Fe layer and the magnitude of the spin gap are similar to the AFe2As2 based materials. However, the ratio of interlayer and intralayer exchange is found to be less than ∼10−4 in LaFeAsO, very similar to the cuprates, and ∼100 times smaller than that found in AFe2As2 compounds. The results suggest that the effective dimensionality of the magnetic system is highly variable in the parent compounds of the iron arsenides and weak three-dimensional interactions may limit the maximum attainable superconducting Tc

    Periodic step arrays on the aperiodic i-Al-Pd-Mn quasicrystal surface at high temperature

    Get PDF
    We have observed the configuration and motion of surface steps on the aperiodic icosahedral (i-) Al-Pd-Mn quasicrystal using low-energy electron microscopy and scanning tunneling microscopy. As the quasicrystal is cooled from high temperature, bulk vacancies migrate to the surface causing the surface to be etched. Surprisingly, this etching occurs by two types of steps with different heights moving in different directions with different velocities. The steady-state surface morphology is a uniformly spaced rhomboidal step network. This network requires that the layer stacking near the surface deviates from the bulk quasicrystal stacking
    corecore