886 research outputs found

    Classification of Multiwavelength Transients with Machine Learning

    Get PDF
    With the advent of powerful telescopes such as the Square Kilometer Array and the Vera C. Rubin Observatory, we are entering an era of multiwavelength transient astronomy that will lead to a dramatic increase in data volume. Machine learning techniques are well suited to address this data challenge and rapidly classify newly detected transients. We present a multiwavelength classification algorithm consisting of three steps: (1) interpolation and augmentation of the data using Gaussian processes; (2) feature extraction using wavelets; and (3) classification with random forests. Augmentation provides improved performance at test time by balancing the classes and adding diversity into the training set. In the first application of machine learning to the classification of real radio transient data, we apply our technique to the Green Bank Interferometer and other radio light curves. We find we are able to accurately classify most of the 11 classes of radio variables and transients after just eight hours of observations, achieving an overall test accuracy of 78 percent. We fully investigate the impact of the small sample size of 82 publicly available light curves and use data augmentation techniques to mitigate the effect. We also show that on a significantly larger simulated representative training set that the algorithm achieves an overall accuracy of 97 percent, illustrating that the method is likely to provide excellent performance on future surveys. Finally, we demonstrate the effectiveness of simultaneous multiwavelength observations by showing how incorporating just one optical data point into the analysis improves the accuracy of the worst performing class by 19 percent.Comment: 16 pages, 12 figure

    Automatic Optic Nerve Measurement: A New Tool to Standardize Optic Nerve Assessment in Ultrasound B-Mode Images

    Get PDF
    Transorbital sonography provides reliable information about the estimation of intra-cranial pressure by measuring the optic nerve sheath diameter (ONSD), whereas the optic nerve (ON) diameter (OND) may reveal ON atrophy in patients with multiple sclerosis. Here, an AUTomatic Optic Nerve MeAsurement (AUTONoMA) system for OND and ONSD assessment in ultrasound B-mode images based on deformable models is presented. The automated measurements were compared with manual ones obtained by two operators, with no significant differences. AUTONoMA correctly segmented the ON and its sheath in 71 out of 75 images. The mean error compared with the expert operator was 0.06 ± 0.52 mm and 0.06 ± 0.35 mm for the ONSD and OND, respectively. The agreement between operators and AUTONoMA was good and a positive correlation was found between the readers and the algorithm with errors comparable with the inter-operator variability. The AUTONoMA system may allow for standardization of OND and ONSD measurements, reducing manual evaluation variability

    Bistability of vortex core dynamics in a single perpendicularly magnetized nano-disk

    Get PDF
    Microwave spectroscopy of individual vortex-state magnetic nano-disks in a perpendicular bias magnetic field, HH, is performed using a magnetic resonance force microscope (MRFM). It reveals the splitting induced by HH on the gyrotropic frequency of the vortex core rotation related to the existence of the two stable polarities of the core. This splitting enables spectroscopic detection of the core polarity. The bistability extends up to a large negative (antiparallel to the core) value of the bias magnetic field HrH_r, at which the core polarity is reversed. The difference between the frequencies of the two stable rotational modes corresponding to each core polarity is proportional to HH and to the ratio of the disk thickness to its radius. Simple analytic theory in combination with micromagnetic simulations give quantitative description of the observed bistable dynamics.Comment: 4 pages, 3 figures, 1 table, 16 references. Submitted to Physical Review Letters on December 19th, 200

    Destruction of the Mott Insulating Ground State of Ca_2RuO_4 by a Structural Transition

    Full text link
    We report a first-order phase transition at T_M=357 K in single crystal Ca_2RuO_4, an isomorph to the superconductor Sr_2RuO_4. The discontinuous decrease in electrical resistivity signals the near destruction of the Mott insulating phase and is triggered by a structural transition from the low temperature orthorhombic to a high temperature tetragonal phase. The magnetic susceptibility, which is temperature dependent but not Curie-like decreases abruptly at TM and becomes less temperature dependent. Unlike most insulator to metal transitions, the system is not magnetically ordered in either phase, though the Mott insulator phase is antiferromagnetic below T_N=110 K.Comment: Accepted for publication in Phys. Rev. B (Rapid Communications

    An overview of the first 5 years of the ENIGMA obsessive–compulsive disorder working group: The power of worldwide collaboration

    Get PDF
    Abstract Neuroimaging has played an important part in advancing our understanding of the neurobiology of obsessive?compulsive disorder (OCD). At the same time, neuroimaging studies of OCD have had notable limitations, including reliance on relatively small samples. International collaborative efforts to increase statistical power by combining samples from across sites have been bolstered by the ENIGMA consortium; this provides specific technical expertise for conducting multi-site analyses, as well as access to a collaborative community of neuroimaging scientists. In this article, we outline the background to, development of, and initial findings from ENIGMA's OCD working group, which currently consists of 47 samples from 34 institutes in 15 countries on 5 continents, with a total sample of 2,323 OCD patients and 2,325 healthy controls. Initial work has focused on studies of cortical thickness and subcortical volumes, structural connectivity, and brain lateralization in children, adolescents and adults with OCD, also including the study on the commonalities and distinctions across different neurodevelopment disorders. Additional work is ongoing, employing machine learning techniques. Findings to date have contributed to the development of neurobiological models of OCD, have provided an important model of global scientific collaboration, and have had a number of clinical implications. Importantly, our work has shed new light on questions about whether structural and functional alterations found in OCD reflect neurodevelopmental changes, effects of the disease process, or medication impacts. We conclude with a summary of ongoing work by ENIGMA-OCD, and a consideration of future directions for neuroimaging research on OCD within and beyond ENIGMA

    The Photometric LSST Astronomical Time-series Classification Challenge PLAsTiCC: Selection of a Performance Metric for Classification Probabilities Balancing Diverse Science Goals

    Get PDF
    Classification of transient and variable light curves is an essential step in using astronomical observations to develop an understanding of the underlying physical processes from which they arise. However, upcoming deep photometric surveys, including the Large Synoptic Survey Telescope (LSST), will produce a deluge of low signal-to-noise data for which traditional type estimation procedures are inappropriate. Probabilistic classification is more appropriate for such data but is incompatible with the traditional metrics used on deterministic classifications. Furthermore, large survey collaborations like LSST intend to use the resulting classification probabilities for diverse science objectives, indicating a need for a metric that balances a variety of goals. We describe the process used to develop an optimal performance metric for an open classification challenge that seeks to identify probabilistic classifiers that can serve many scientific interests. The Photometric LSST Astronomical Time-series Classification Challenge (PLAsTiCC) aims to identify promising techniques for obtaining classification probabilities of transient and variable objects by engaging a broader community beyond astronomy. Using mock classification probability submissions emulating realistically complex archetypes of those anticipated of PLAsTiCC, we compare the sensitivity of two metrics of classification probabilities under various weighting schemes, finding that both yield results that are qualitatively consistent with intuitive notions of classification performance. We thus choose as a metric for PLAsTiCC a weighted modification of the cross-entropy because it can be meaningfully interpreted in terms of information content. Finally, we propose extensions of our methodology to ever more complex challenge goals and suggest some guiding principles for approaching the choice of a metric of probabilistic data products

    Promotion of mental health in young adults via mobile phone app: study protocol of the ECoWeB (emotional competence for well-being in Young adults) cohort multiple randomised trials

    Get PDF
    This is the final version. Available on open access from BMC via the DOI in this recordAvailability of data and materials: Anonymised datasets arising from this trial will be made available after the primary outcomes are published to researchers and other groups via request to a data committee within the Consortium via the University of Exeter’s open access data system Open Research Exeter (ORE). ECoWeB partners will have access to the final trial dataset, commensurate with the grant Consortium Agreement. The results will additionally be updated on ClinicalTrials.gov Identifier: NCT04148508. The ECoWeB consortium plans to communicate trial results through peer-reviewed open access publications and direct reports to TSC, sponsor, and participants.BACKGROUND: Promoting well-being and preventing poor mental health in young people is a major global priority. Building emotional competence (EC) skills via a mobile app may be an effective, scalable and acceptable way to do this. However, few large-scale controlled trials have examined the efficacy of mobile apps in promoting mental health in young people; none have tailored the app to individual profiles. METHOD/DESIGN: The Emotional Competence for Well-Being in Young Adults cohort multiple randomised controlled trial (cmRCT) involves a longitudinal prospective cohort to examine well-being, mental health and EC in 16-22 year olds across 12 months. Within the cohort, eligible participants are entered to either the PREVENT trial (if selected EC scores at baseline within worst-performing quartile) or to the PROMOTE trial (if selected EC scores not within worst-performing quartile). In both trials, participants are randomised (i) to continue with usual practice, repeated assessments and a self-monitoring app; (ii) to additionally receive generic cognitive-behavioural therapy self-help in app; (iii) to additionally receive personalised EC self-help in app. In total, 2142 participants aged 16 to 22 years, with no current or past history of major depression, bipolar disorder or psychosis will be recruited across UK, Germany, Spain, and Belgium. Assessments take place at baseline (pre-randomisation), 1, 3 and 12 months post-randomisation. Primary endpoint and outcome for PREVENT is level of depression symptoms on the Patient Health Questionnaire-9 at 3 months; primary endpoint and outcome for PROMOTE is emotional well-being assessed on the Warwick-Edinburgh Mental Wellbeing Scale at 3 months. Depressive symptoms, anxiety, well-being, health-related quality of life, functioning and cost-effectiveness are secondary outcomes. Compliance, adverse events and potentially mediating variables will be carefully monitored. CONCLUSIONS: The trial aims to provide a better understanding of the causal role of learning EC skills using interventions delivered via mobile phone apps with respect to promoting well-being and preventing poor mental health in young people. This knowledge will be used to develop and disseminate innovative evidence-based, feasible, and effective Mobile-health public health strategies for preventing poor mental health and promoting well-being. TRIAL REGISTRATION: ClinicalTrials.gov ( www.clinicaltrials.org ). Number of identification: NCT04148508 November 2019.European Union Horizon 202

    Brain structural covariance networks in obsessive-compulsive disorder: a graph analysis from the ENIGMA Consortium.

    Get PDF
    Brain structural covariance networks reflect covariation in morphology of different brain areas and are thought to reflect common trajectories in brain development and maturation. Large-scale investigation of structural covariance networks in obsessive-compulsive disorder (OCD) may provide clues to the pathophysiology of this neurodevelopmental disorder. Using T1-weighted MRI scans acquired from 1616 individuals with OCD and 1463 healthy controls across 37 datasets participating in the ENIGMA-OCD Working Group, we calculated intra-individual brain structural covariance networks (using the bilaterally-averaged values of 33 cortical surface areas, 33 cortical thickness values, and six subcortical volumes), in which edge weights were proportional to the similarity between two brain morphological features in terms of deviation from healthy controls (i.e. z-score transformed). Global networks were characterized using measures of network segregation (clustering and modularity), network integration (global efficiency), and their balance (small-worldness), and their community membership was assessed. Hub profiling of regional networks was undertaken using measures of betweenness, closeness, and eigenvector centrality. Individually calculated network measures were integrated across the 37 datasets using a meta-analytical approach. These network measures were summated across the network density range of K = 0.10-0.25 per participant, and were integrated across the 37 datasets using a meta-analytical approach. Compared with healthy controls, at a global level, the structural covariance networks of OCD showed lower clustering (P < 0.0001), lower modularity (P < 0.0001), and lower small-worldness (P = 0.017). Detection of community membership emphasized lower network segregation in OCD compared to healthy controls. At the regional level, there were lower (rank-transformed) centrality values in OCD for volume of caudate nucleus and thalamus, and surface area of paracentral cortex, indicative of altered distribution of brain hubs. Centrality of cingulate and orbito-frontal as well as other brain areas was associated with OCD illness duration, suggesting greater involvement of these brain areas with illness chronicity. In summary, the findings of this study, the largest brain structural covariance study of OCD to date, point to a less segregated organization of structural covariance networks in OCD, and reorganization of brain hubs. The segregation findings suggest a possible signature of altered brain morphometry in OCD, while the hub findings point to OCD-related alterations in trajectories of brain development and maturation, particularly in cingulate and orbitofrontal regions

    Long Term Variability of Cyg X-1, II. The rms-Flux Relation

    Full text link
    We study the long term evolution of the relationship between the root mean square (rms) variability and flux (the ``rms-flux relation'') for the black hole Cygnus X-1 as monitored from 1996 to 2003 with the Rossi X-ray Timing Explorer (RXTE). We confirm earlier results by Uttley & McHardy (2001) of a linear relationship between rms and flux in the hard state on time scales > 5 s reflecting in its slope the fractional rms variability. We demonstrate the perpetuation of the linear rms-flux relation in the soft and the intermediate state. The existence of a non-zero intercept in the linear rms-flux relation argues for two lightcurve components, for example, one variable and one non-variable component, or a possible constant rms component. The relationship between these two hypothesized components can be described by a fundamental dependence of slope and intercept at time scales ~< 10 ksec with long term averages of the flux.Comment: 14 pages, 1 table, 15 figures, accepted for publication in A&A, corrected layou
    • 

    corecore