65 research outputs found

    Coping with anxiety: Brain structural correlates of vigilance and cognitive avoidance

    Get PDF
    Background: Individuals differ in their dispositional coping behavior when they are confronted with anxiety-provoking situations. Cognitive avoidance is characterized by a withdrawal from threatening information, whereas vigilance denotes the intensive search for threat-related information. Functional neuroimaging studies indicate alterations in brain responsivity to emotional stimuli as a function of cognitive avoidant and vigilant coping, but findings are partially discrepant. Studies on structural correlates of coping styles are scarce. Materials and Methods: By using structural magnetic resonance imaging, the present study examined the relationship between brain gray matter volume and coping strategies in 114 healthy individuals. Individual differences in vigilance and cognitive avoidance were measured by the Mainz Coping Inventory. Results: Exploratory whole-brain analyses were conducted. Cognitive avoidant coping significantly predicted reduced gray matter volume in the bilateral thalamus, whereas vigilant coping was associated with volumetric increases in the bilateral thalamus. These relationships remained significant when controlling for a potential influence of age, sex, depressive symptoms, and trait anxiety. Discussion: Our findings indicate that dispositional strategies to deal with anxiety-provoking situations are related to volumetric alterations in the thalamus, a brain structure that has been implicated in the mediation of attentional processes and alertness, and the anticipation of harm. The dispositional tendency to monitor the environment for potential threats (i.e., vigilance), appears to be associated with volumetric increases in the thalamus, whereas the dispositional inclination to divert one’s attention away from distressing stimuli (i.e., cognitive avoidance) seems to go along with reductions in thalamic gray matter density

    Individual differences in anxiety and automatic amygdala response to fearful faces: A replication and extension of Etkin et al. (2004)

    Get PDF
    Trait anxiety refers to the stable tendency to attend to threats and experience fears and worries across many situations. According to the widely noticed, pioneering investigation by Etkin et al. (2004) trait anxiety is strongly associated with reactivity in the right basolateral amygdala to non-conscious threat. Although this observation was based on a sample of only 17 individuals, no replication effort has been reported yet. We reexamined automatic amygdala responsiveness as a function of anxiety in a large sample of 107 participants. Besides self-report instruments, we administered an indirect test to assess implicit anxiety. To assess early, automatic stages of emotion processing, we used a color-decision paradigm presenting brief (33 ms) and backward-masked fearful facial expressions. N = 56 participants were unaware of the presence of masked faces. In this subset of unaware participants, the relationship between trait anxiety and basolateral amygdala activation by fearful faces was successfully replicated in region of interest analyses. Additionally, a relation of implicit anxiety with masked fear processing in the amygdala and temporal gyrus was observed. We provide evidence that implicit measures of affect can be valuable predictors of automatic brain responsiveness and may represent useful additions to explicit measures. Our findings support a central role of amygdala reactivity to non-consciously perceived threat in understanding and predicting dispositional anxiety, i.e. the frequency of spontaneously occurring anxiety in everyday life

    A stereotaxic, population-averaged T1w ovine brain atlas including cerebral morphology and tissue volumes

    Get PDF
    Standard stereotaxic reference systems play a key role in human brain studies. Stereotaxic coordinate systems have also been developed for experimental animals including non-human primates, dogs, and rodents. However, they are lacking for other species being relevant in experimental neuroscience including sheep. Here, we present a spatial, unbiased ovine brain template with tissue probability maps (TPM) that offer a detailed stereotaxic reference frame for anatomical features and localization of brain areas, thereby enabling inter-individual and cross-study comparability. Three-dimensional data sets from healthy adult Merino sheep (Ovis orientalis aries, 12 ewes and 26 neutered rams) were acquired on a 1.5 T Philips MRI using a T1w sequence. Data were averaged by linear and non-linear registration algorithms. Moreover, animals were subjected to detailed brain volume analysis including examinations with respect to body weight (BW), age, and sex. The created T1w brain template provides an appropriate population-averaged ovine brain anatomy in a spatial standard coordinate system. Additionally, TPM for gray (GM) and white (WM) matter as well as cerebrospinal fluid (CSF) classification enabled automatic prior-based tissue segmentation using statistical parametric mapping (SPM). Overall, a positive correlation of GM volume and BW explained about 15% of the variance of GM while a positive correlation between WM and age was found. Absolute tissue volume differences were not detected, indeed ewes showed significantly more GM per bodyweight as compared to neutered rams. The created framework including spatial brain template and TPM represent a useful tool for unbiased automatic image preprocessing and morphological characterization in sheep. Therefore, the reported results may serve as a starting point for further experimental and/or translational research aiming at in vivo analysis in this species

    Publisher Correction: Demonstration of reduced neoclassical energy transport in Wendelstein 7-X

    Get PDF

    Demonstration of reduced neoclassical energy transport in Wendelstein 7-X

    Get PDF

    Experimental confirmation of efficient island divertor operation and successful neoclassical transport optimization in Wendelstein 7-X

    Get PDF

    Forward modeling of collective Thomson scattering for Wendelstein 7-X plasmas: Electrostatic approximation

    Get PDF
    In this paper, we present a method for numerical computation of collective Thomson scattering (CTS). We developed a forward model, eCTS, in the electrostatic approximation and benchmarked it against a full electromagnetic model. Differences between the electrostatic and the electromagnetic models are discussed. The sensitivity of the results to the ion temperature and the plasma composition is demonstrated. We integrated the model into the Bayesian data analysis framework Minerva and used it for the analysis of noisy synthetic data sets produced by a full electromagnetic model. It is shown that eCTS can be used for the inference of the bulk ion temperature. The model has been used to infer the bulk ion temperature from the first CTS measurements on Wendelstein 7-X

    Towards a new image processing system at Wendelstein 7-X: From spatial calibration to characterization of thermal events

    Get PDF
    Wendelstein 7-X (W7-X) is the most advanced fusion experiment in the stellarator line and is aimed at proving that the stellarator concept is suitable for a fusion reactor. One of the most important issues for fusion reactors is the monitoring of plasma facing components when exposed to very high heat loads, through the use of visible and infrared (IR) cameras. In this paper, a new image processing system for the analysis of the strike lines on the inboard limiters from the first W7-X experimental campaign is presented. This system builds a model of the IR cameras through the use of spatial calibration techniques, helping to characterize the strike lines by using the information given by real spatial coordinates of each pixel. The characterization of the strike lines is made in terms of position, size, and shape, after projecting the camera image in a 2D grid which tries to preserve the curvilinear surface distances between points. The description of the strike-line shape is made by means of the Fourier Descriptors

    Experimental confirmation of efficient island divertor operation and successful neoclassical transport optimization in Wendelstein 7-X

    Get PDF
    We present recent highlights from the most recent operation phases of Wendelstein 7-X, the most advanced stellarator in the world. Stable detachment with good particle exhaust, low impurity content, and energy confinement times exceeding 100 ms, have been maintained for tens of seconds. Pellet fueling allows for plasma phases with reduced ion-temperature-gradient turbulence, and during such phases, the overall confinement is so good (energy confinement times often exceeding 200 ms) that the attained density and temperature profiles would not have been possible in less optimized devices, since they would have had neoclassical transport losses exceeding the heating applied in W7-X. This provides proof that the reduction of neoclassical transport through magnetic field optimization is successful. W7-X plasmas generally show good impurity screening and high plasma purity, but there is evidence of longer impurity confinement times during turbulence-suppressed phases.EC/H2020/633053/EU/Implementation of activities described in the Roadmap to Fusion during Horizon 2020 through a Joint programme of the members of the EUROfusion consortium/ EUROfusio

    Alien Hand Syndrom bei rupturierten Aneurysmen - eine systematische Übersichtsarbeit und Case Report

    No full text
    corecore