9,711 research outputs found
Farm leases in Iowa
Farm tenancy in Iowa is a live question because already, a large percentage of the farms of the state are operated by tenants and because there has been a rapid increase in the number of farms rented from year to year. The opinion is quite generally held that one can tell a rented farm by its dilapidated buildings, poor crops and worn out land. It is also quite generally believed that there is something wrong with the existing system of. farm leases as a whole. The fact is that many of the best managed and most successful farms are operated by tenants and in general it may be stated that out of experience have come several methods of leasing which seem to provide for good farming and a fair division of returns between the land owner and tenant.
These general facts were brought out in an investigation prompted by the general interest in farm tenancy and the rapid increase of rented farms operated by year to year tenants. Director C. F. Curtiss of the Iowa Agricultural Experiment station planned to undertake this investigation and secured the cooperation of the United States Department of Agriculture in an effort to get at the truth about farm tenancy and to determine what constitutes a satisfactory farm lease. In other words, the purpose of the investigation was to learn what the landlord and tenant each should furnish and what each should receive in a lease which calls for profitable farming and a fair division of the farm returns
Quantum error correction of coherent errors by randomization
A general error correction method is presented which is capable of correcting
coherent errors originating from static residual inter-qubit couplings in a
quantum computer. It is based on a randomization of static imperfections in a
many-qubit system by the repeated application of Pauli operators which change
the computational basis. This Pauli-Random-Error-Correction (PAREC)-method
eliminates coherent errors produced by static imperfections and increases
significantly the maximum time over which realistic quantum computations can be
performed reliably. Furthermore, it does not require redundancy so that all
physical qubits involved can be used for logical purposes.Comment: revtex 4 pages, 3 fig
Linear optics substituting scheme for multi-mode operations
We propose a scheme allowing a conditional implementation of suitably
truncated general single- or multi-mode operators acting on states of traveling
optical signal modes. The scheme solely relies on single-photon and coherent
states and applies beam splitters and zero- and single-photon detections. The
signal flow of the setup resembles that of a multi-mode quantum teleportation
scheme thus allowing the individual signal modes to be spatially separated from
each other. Some examples such as the realization of cross-Kerr nonlinearities,
multi-mode mirrors, and the preparation of multi-photon entangled states are
considered.Comment: 11 pages, 4 eps-figures, using revtex
Deciding Full Branching Time Logic by Program Transformation
We present a method based on logic program transformation, for verifying Computation Tree Logic (CTL*) properties of finite state reactive systems. The finite state systems and the CTL* properties we want to verify, are encoded as logic programs on infinite lists. Our verification method consists of two steps. In the first step we transform the logic program that encodes the given system and the given property, into a monadic Ï -program, that is, a stratified program defining nullary or unary predicates on infinite lists. This transformation is performed by applying unfold/fold rules that preserve the perfect model of the initial program. In the second step we verify the property of interest by using a proof method for monadic Ï-program
Infant cortex responds to other humans from shortly after birth
A significant feature of the adult human brain is its ability to selectively process information about conspecifics. Much debate has centred on whether this specialization is primarily a result of phylogenetic adaptation, or whether the brain acquires expertise in processing social stimuli as a result of its being born into an intensely social environment. Here we study the haemodynamic response in cortical areas of newborns (1â5 days old) while they passively viewed dynamic human or mechanical action videos. We observed activation selective to a dynamic face stimulus over bilateral posterior temporal cortex, but no activation in response to a moving human arm. This selective activation to the social stimulus correlated with age in hours over the first few days post partum. Thus, even very limited experience of face-to-face interaction with other humans may be sufficient to elicit social stimulus activation of relevant cortical regions
Mean first-passage times of non-Markovian random walkers in confinement
The first-passage time (FPT), defined as the time a random walker takes to
reach a target point in a confining domain, is a key quantity in the theory of
stochastic processes. Its importance comes from its crucial role to quantify
the efficiency of processes as varied as diffusion-limited reactions, target
search processes or spreading of diseases. Most methods to determine the FPT
properties in confined domains have been limited to Markovian (memoryless)
processes. However, as soon as the random walker interacts with its
environment, memory effects can not be neglected. Examples of non Markovian
dynamics include single-file diffusion in narrow channels or the motion of a
tracer particle either attached to a polymeric chain or diffusing in simple or
complex fluids such as nematics \cite{turiv2013effect}, dense soft colloids or
viscoelastic solution. Here, we introduce an analytical approach to calculate,
in the limit of a large confining volume, the mean FPT of a Gaussian
non-Markovian random walker to a target point. The non-Markovian features of
the dynamics are encompassed by determining the statistical properties of the
trajectory of the random walker in the future of the first-passage event, which
are shown to govern the FPT kinetics.This analysis is applicable to a broad
range of stochastic processes, possibly correlated at long-times. Our
theoretical predictions are confirmed by numerical simulations for several
examples of non-Markovian processes including the emblematic case of the
Fractional Brownian Motion in one or higher dimensions. These results show, on
the basis of Gaussian processes, the importance of memory effects in
first-passage statistics of non-Markovian random walkers in confinement.Comment: Submitted version. Supplementary Information can be found on the
Nature website :
http://www.nature.com/nature/journal/v534/n7607/full/nature18272.htm
Design and construction of an optical test bed for LISA imaging systems and tilt-to-length coupling
The laser interferometer space antenna (LISA) is a future space-based interferometric gravitational-wave detector consisting of three spacecraft in a triangular configuration. The interferometric measurements of path length changes between satellites will be performed on optical benches in the satellites. Angular misalignments of the interfering beams couple into the length measurement and represent a significant noise source. Imaging systems will be used to reduce this tilt-to-length coupling.
We designed and constructed an optical test bed to experimentally investigate tilt-to-length coupling. It consists of two separate structures, a minimal optical bench and a telescope simulator. The minimal optical bench comprises the science interferometer where the local laser is interfered with light from a remote spacecraft. In our experiment, a simulated version of this received beam is generated on the telescope simulator. The telescope simulator provides a tilting beam, a reference interferometer and an additional static beam as a phase reference. The tilting beam can either be a flat-top beam or a Gaussian beam. We avoid tilt-to-length coupling in the reference interferometer by using a small photo diode placed at an image of the beam rotation point. We show that the test bed is operational with an initial measurement of tilt-to-length coupling without imaging systems.
Furthermore, we show the design of two different imaging systems whose performance will be investigated in future experiments
Numerical simulation of a Controlled-Controlled-Not (CCN) quantum gate in a chain of three interacting nuclear spins system
We present the study of a quantum Controlled-Controlled-Not gate, implemented
in a chain of three nuclear spins weakly Ising interacting between all of them,
that is, taking into account first and second neighbor spin interactions. This
implementation is done using a single resonant -pulse on the initial state
of the system (digital and superposition). The fidelity parameter is used to
determine the behavior of the CCN quantum gate as a function of the ratio of
the second neighbor interaction coupling constant to the first neighbor
interaction coupling constant (). We found that for we can
have a well defined CCN quantum gate.Comment: 9 pages, 5 fugure
Tomorrowâs world: Current developments in the therapeutic use of technology for psychosis
There is now an established evidence base for the use of information and communication technology (ICT) to support mental healthcare (âe-mental healthâ) for common mental health problems. Recently, there have been significant develop-ments in the therapeutic use of computers, mobile phones, gaming and virtual reality technologies for the assessment and treatment of psychosis. We provide an overview of the therapeutic use of ICT for psychosis, drawing on searches of the scientific literature and the internet and using interviews with experts in the field. We outline interventions that are already relevant to clinical practice, some that may become available in the foreseeable future and emerging challenges for their implementation
- âŠ