6,397 research outputs found
Experimental Implementation of the Quantum Baker's Map
This paper reports on the experimental implementation of the quantum baker's
map via a three bit nuclear magnetic resonance (NMR) quantum information
processor. The experiments tested the sensitivity of the quantum chaotic map to
perturbations. In the first experiment, the map was iterated forward and then
backwards to provide benchmarks for intrinsic errors and decoherence. In the
second set of experiments, the least significant qubit was perturbed in between
the iterations to test the sensitivity of the quantum chaotic map to applied
perturbations. These experiments are used to investigate previous predicted
properties of quantum chaotic dynamics.Comment: submitted to PR
Quantum Process Tomography of the Quantum Fourier Transform
The results of quantum process tomography on a three-qubit nuclear magnetic
resonance quantum information processor are presented, and shown to be
consistent with a detailed model of the system-plus-apparatus used for the
experiments. The quantum operation studied was the quantum Fourier transform,
which is important in several quantum algorithms and poses a rigorous test for
the precision of our recently-developed strongly modulating control fields. The
results were analyzed in an attempt to decompose the implementation errors into
coherent (overall systematic), incoherent (microscopically deterministic), and
decoherent (microscopically random) components. This analysis yielded a
superoperator consisting of a unitary part that was strongly correlated with
the theoretically expected unitary superoperator of the quantum Fourier
transform, an overall attenuation consistent with decoherence, and a residual
portion that was not completely positive - although complete positivity is
required for any quantum operation. By comparison with the results of computer
simulations, the lack of complete positivity was shown to be largely a
consequence of the incoherent errors during the quantum process tomography
procedure. These simulations further showed that coherent, incoherent, and
decoherent errors can often be identified by their distinctive effects on the
spectrum of the overall superoperator. The gate fidelity of the experimentally
determined superoperator was 0.64, while the correlation coefficient between
experimentally determined superoperator and the simulated superoperator was
0.79; most of the discrepancies with the simulations could be explained by the
cummulative effect of small errors in the single qubit gates.Comment: 26 pages, 17 figures, four tables; in press, Journal of Chemical
Physic
PVR: Patch-to-Volume Reconstruction for Large Area Motion Correction of Fetal MRI
In this paper we present a novel method for the correction of motion
artifacts that are present in fetal Magnetic Resonance Imaging (MRI) scans of
the whole uterus. Contrary to current slice-to-volume registration (SVR)
methods, requiring an inflexible anatomical enclosure of a single investigated
organ, the proposed patch-to-volume reconstruction (PVR) approach is able to
reconstruct a large field of view of non-rigidly deforming structures. It
relaxes rigid motion assumptions by introducing a specific amount of redundant
information that is exploited with parallelized patch-wise optimization,
super-resolution, and automatic outlier rejection. We further describe and
provide an efficient parallel implementation of PVR allowing its execution
within reasonable time on commercially available graphics processing units
(GPU), enabling its use in the clinical practice. We evaluate PVR's
computational overhead compared to standard methods and observe improved
reconstruction accuracy in presence of affine motion artifacts of approximately
30% compared to conventional SVR in synthetic experiments. Furthermore, we have
evaluated our method qualitatively and quantitatively on real fetal MRI data
subject to maternal breathing and sudden fetal movements. We evaluate
peak-signal-to-noise ratio (PSNR), structural similarity index (SSIM), and
cross correlation (CC) with respect to the originally acquired data and provide
a method for visual inspection of reconstruction uncertainty. With these
experiments we demonstrate successful application of PVR motion compensation to
the whole uterus, the human fetus, and the human placenta.Comment: 10 pages, 13 figures, submitted to IEEE Transactions on Medical
Imaging. v2: wadded funders acknowledgements to preprin
The neurodevelopmental implications of hypoplastic left heart syndrome in the fetus
Abstract As survival after cardiac surgery continues to improve, an increasing number of patients with hypoplastic left heart syndrome are reaching school age and beyond, with growing recognition of the wide range of neurodevelopmental challenges many survivors face. Improvements in fetal detection rates, coupled with advances in fetal ultrasound and MRI imaging, are contributing to a growing body of evidence that abnormal brain architecture is in fact present before birth in hypoplastic left heart syndrome patients, rather than being solely attributable to postnatal factors. We present an overview of the contemporary data on neurodevelopmental outcomes in hypoplastic left heart syndrome, focussing on imaging techniques that are providing greater insight into the nature of disruptions to the fetal circulation, alterations in cerebral blood flow and substrate delivery, disordered brain development, and an increased potential for neurological injury. These susceptibilities are present before any intervention, and are almost certainly substantial contributors to adverse neurodevelopmental outcomes in later childhood. The task now is to determine which subgroups of patients with hypoplastic left heart syndrome are at particular risk of poor neurodevelopmental outcomes and how that risk might be modified. This will allow for more comprehensive counselling for carers, better-informed decision making before birth, and earlier, more tailored provision of neuroprotective strategies and developmental support in the postnatal period
Exponential speed-up with a single bit of quantum information: Testing the quantum butterfly effect
We present an efficient quantum algorithm to measure the average fidelity
decay of a quantum map under perturbation using a single bit of quantum
information. Our algorithm scales only as the complexity of the map under
investigation, so for those maps admitting an efficient gate decomposition, it
provides an exponential speed up over known classical procedures. Fidelity
decay is important in the study of complex dynamical systems, where it is
conjectured to be a signature of quantum chaos. Our result also illustrates the
role of chaos in the process of decoherence.Comment: 4 pages, 2 eps figure
The Chemical Compositions of the Type II Cepheids -- The BL Her and W Vir Variables
Abundance analyses from high-resolution optical spectra are presented for 19
Type II Cepheids in the Galactic field. The sample includes both short-period
(BL Her) and long-period (W Vir) stars. This is the first extensive abundance
analysis of these variables. The C, N, and O abundances with similar spreads
for the BL Her and W Vir show evidence for an atmosphere contaminated with
-process and CN-cycling products. A notable anomaly of the BL Her
stars is an overabundance of Na by a factor of about five relative to their
presumed initial abundances. This overabundance is not seen in the W Vir stars.
The abundance anomalies running from mild to extreme in W Vir stars but not
seen in the BL Her stars are attributed to dust-gas separation that provides an
atmosphere deficient in elements of high condensation temperature, notably Al,
Ca, Sc, Ti, and -process elements. Such anomalies have previously been seen
among RV Tau stars which represent a long-period extension of the variability
enjoyed by the Type II Cepheids. Comments are offered on how the contrasting
abundance anomalies of BL Her and W Vir stars may be explained in terms of the
stars' evolution from the blue horizontal branch.Comment: 41 pages including 11 figures and 4 tables; Accepted for publication
in Ap
The Challenge of Fetal Cardiac MRI Reconstruction Using Deep Learning
Dynamic free-breathing fetal cardiac MRI is one of the most challenging
modalities, which requires high temporal and spatial resolution to depict rapid
changes in a small fetal heart. The ability of deep learning methods to recover
undersampled data could help to optimise the kt-SENSE acquisition strategy and
improve non-gated kt-SENSE reconstruction quality. In this work, we explore
supervised deep learning networks for reconstruction of kt-SENSE style acquired
data using an extensive in vivo dataset. Having access to fully-sampled
low-resolution multi-coil fetal cardiac MRI, we study the performance of the
networks to recover fully-sampled data from undersampled data. We consider
model architectures together with training strategies taking into account their
application in the real clinical setup used to collect the dataset to enable
networks to recover prospectively undersampled data. We explore a set of
modifications to form a baseline performance evaluation for dynamic fetal
cardiac MRI on real data. We systematically evaluate the models on
coil-combined data to reveal the effect of the suggested changes to the
architecture in the context of fetal heart properties. We show that the
best-performers recover a detailed depiction of the maternal anatomy on a large
scale, but the dynamic properties of the fetal heart are under-represented.
Training directly on multi-coil data improves the performance of the models,
allows their prospective application to undersampled data and makes them
outperform CTFNet introduced for adult cardiac cine MRI. However, these models
deliver similar qualitative performances recovering the maternal body very well
but underestimating the dynamic properties of fetal heart. This dynamic feature
of fast change of fetal heart that is highly localised suggests both more
targeted training and evaluation methods might be needed for fetal heart
application
Krüppel-Like Transcription Factor KLF1 Is Required for Optimal γ- and β-Globin Expression in Human Fetal Erythroblasts
In human adult erythroid cells, lower than normal levels of Krüppel-like transcription factor 1 (KLF1) are generally associated with decreased adult β- and increased fetal γ-globin gene expression. KLF1 also regulates BCL11A, a known repressor of adult γ-globin expression. In seeming contrast to the findings in adult cells, lower amounts of KLF1 correlate with both reduced embryonic and reduced fetal β-like globin mRNA in mouse embryonic erythroid cells. The role of KLF1 in primary human fetal erythroid cells, which express both γ- and β-globin mRNA, is less well understood. Therefore, we studied the role of KLF1 in ex vivo differentiated CD34+ umbilical cord blood cells (UCB erythroblasts), representing the fetal milieu. In UCB erythroblasts, KLF1 binds to the β-globin locus control region (LCR), and the β-globin promoter. There is very little KLF1 binding detectable at the γ-globin promoter. Correspondingly, when cultured fetal UCB erythroblasts are subjected to lentiviral KLF1 knockdown, the active histone mark H3K4me3 and RNA pol II recruitment are diminished at the β- but not the γ-globin gene. The amount of KLF1 expression strongly positively correlates with β-globin mRNA and weakly positively correlates with BCL11A mRNA. With modest KLF1 knockdown, mimicking haploinsufficiency, γ-globin mRNA is increased in UCB erythroblasts, as is common in adult cells. However, a threshold level of KLF1 is evidently required, or there is no absolute increase in γ-globin mRNA in UCB erythroblasts. Therefore, the role of KLF1 in γ-globin regulation in fetal erythroblasts is complex, with both positive and negative facets. Furthermore, in UCB erythroblasts, diminished BCL11A is not sufficient to induce γ-globin in the absence of KLF1. These findings have implications for the manipulation of BCL11A and/or KLF1 to induce γ-globin for therapy of the β-hemoglobinopathies
Recommended from our members
Development and Utility of Quality Metrics for Ambulatory Pediatric Cardiology in Kawasaki Disease.
The Adult Congenital and Pediatric Cardiology (ACPC) Section of the American College of Cardiology sought to develop quality indicators/metrics for ambulatory pediatric cardiology practice. The objective of this study was to report the creation of metrics for patients with Kawasaki disease. Over a period of 5 months, 12 pediatric cardiologists developed 24 quality metrics based on the most relevant statements, guidelines, and research studies pertaining to Kawasaki disease. Of the 24 metrics, the 8 metrics deemed the most important, feasible, and valid were sent on to the ACPC for consideration. Seven of the 8 metrics were approved using the RAND method by an expert panel. All 7 metrics approved by the ACPC council were accepted by ACPC membership after an "open comments" process. They have been disseminated to the pediatric cardiology community for implementation by the ACPC Quality Network
- …