3,702 research outputs found

    Cationic ordering control of magnetization in Sr2FeMoO6 double perovskite

    Full text link
    The role of the synthesis conditions on the cationic Fe/Mo ordering in Sr2FeMoO6 double perovskite is addressed. It is shown that this ordering can be controlled and varied systematically. The Fe/Mo ordering has a profound impact on the saturation magnetization of the material. Using the appropriate synthesis protocol a record value of 3.7muB/f.u. has been obtained. Mossbauer analysis reveals the existence of two distinguishable Fe sites in agreement with the P4/mmm symmetry and a charge density at the Fe(m+) ions significantly larger than (+3) suggesting a Fe contribution to the spin-down conduction band. The implications of these findings for the synthesis of Sr2FeMoO6 having optimal magnetoresistance response are discussed.Comment: 9 pages, 4 figure

    Fast Bayesian gravitational wave parameter estimation using convolutional neural networks

    Full text link
    The determination of the physical parameters of gravitational wave events is a fundamental pillar in the analysis of the signals observed by the current ground-based interferometers. Typically, this is done using Bayesian inference approaches which, albeit very accurate, are very computationally expensive. We propose a convolutional neural network approach to perform this task. The convolutional neural network is trained using simulated signals injected in a Gaussian noise. We verify the correctness of the neural network's output distribution and compare its estimates with the posterior distributions obtained from traditional Bayesian inference methods for some real events. The results demonstrate the convolutional neural network's ability to produce posterior distributions that are compatible with the traditional methods. Moreover, it achieves a remarkable inference speed, lowering by orders of magnitude the times of Bayesian inference methods, enabling real-time analysis of gravitational wave signals. Despite the observed reduced accuracy in the parameters, the neural network provides valuable initial indications of key parameters of the event such as the sky location, facilitating a multi-messenger approach

    Determination of the light exposure on the photodiodes of a new instrumented baffle for the Virgo input mode cleaner end-mirror

    Get PDF
    As part of the upgrade program of the Advanced Virgo interferometer, the installation of new instrumented baffles surrounding the main test masses is foreseen. As a demonstrator, and to validate the technology, the existing baffle in the area of the input mode cleaner end-mirror will be first replaced by a baffle equipped with photodiodes. This paper presents detailed simulations of the light distribution on the input mode cleaner baffle, with the aim to determine the light exposure of the photodiodes under different scenarios of the interferometer operation.Comment: 9 pages and 8 figure

    Exchange bias in laterally oxidized Au/Co/Au nanopillars

    Get PDF
    Au/Co/Au nanopillars fabricated by colloidal lithography of continuous trilayers exhibit and enhanced coercive field and the appearance of an exchange bias field with respect to the continuous layers. This is attributed to the lateral oxidation of the Co interlayer that appears upon disc fabrication. The dependence of the exchange bias field on the Co nanodots size and on the oxidation degree is analyzed and its microscopic origin clarified by means of Monte Carlo simulations based on a model of a cylindrical dot with lateral core/shell structure.Comment: 8 pages, 4 figures. Published in Appl. Phys. Let

    Adrenomedullin and tumour angiogenesis

    Get PDF
    The angiogenic activity of peptide adrenomedullin (AM) was first shown in 1998 . Since then, a number of reports have confirmed the ability of AM to induce the growth and migration of isolated vascular endothelial and smooth muscle cells in vitro and to promote angiogenesis in xenografted tumours in vivo. In addition, knockout murine models point to an essential role for AM in embryonic vasculogenesis and ischaemic revascularisation. AM expression is upregulated by hypoxia (a typical feature of solid tumours) and a potential role as a regulator of carcinogenesis and tumour progression has been proposed based on studies in vitro and in animal models. Nevertheless, translational research on AM, and in particular, confirmation of its importance in the vascularisation of human tumours has lagged behind. In this commentary, we review current progress and potential directions for future research into the role of AM in tumour angiogenesis

    The alhambra survey: evolution of galaxy spectral segregation

    Get PDF
    We study the clustering of galaxies as a function of spectral type and redshift in the range 0.35 <z <1.1 using data from the Advanced Large Homogeneous Area Medium Band Redshift Astronomical (ALHAMBRA) survey. The data cover 2.381 deg2 in 7 fields, after applying a detailed angular selection mask, with accurate photometric redshifts down to IAB <24. From this catalog we draw five fixed number density redshift-limited bins. We estimate the clustering evolution for two different spectral populations selected using the ALHAMBRA-based photometric templates: quiescent and star-forming galaxies. For each sample we measure the real-space clustering using the projected correlation function. Our calculations are performed over the range [0.03, 10.0] h-1 Mpc, allowing us to find a steeper trend for Mpc, which is especially clear for star-forming galaxies. Our analysis also shows a clear early differentiation in the clustering properties of both populations: star-forming galaxies show weaker clustering with evolution in the correlation length over the analyzed redshift range, while quiescent galaxies show stronger clustering already at high redshifts and no appreciable evolution. We also perform the bias calculation where similar segregation is found, but now it is among the quiescent galaxies where a growing evolution with redshift is clearer (abrigatted). These findings clearly corroborate the well-known color-density relation, confirming that quiescent galaxies are mainly located in dark matter halos that are more massive than those typically populated by star-forming galaxies.Ministerio de Economía y Competitividad y FEDER AYA2010-22111-C03-02 AYA2013-48623-C2-2 AYA2012-39620 AYA2013-40611-P AYA2013-42227-P AYA2013-43188-P AYA2013-48623-C2-1 ESP2013-48274 AYA2014-58861-C3-1Junta de Andalucía TIC114 JA2828 P10-FQM-644

    Measurement of the Stray Light in the Advanced Virgo Input Mode Cleaner Cavity using an instrumented baffle

    Full text link
    A new instrumented baffle was installed in Spring 2021 at Virgo surrounding the suspended mirror in the input mode cleaner triangular cavity. It serves as a demonstrator of the technology designed to instrument the baffles in the main arms in the near future. We present, for the first time, results on the measured scattered light distribution inside the cavity as determined by the new device using data collected between May and July 2021, with Virgo in commissioning phase and operating with an input laser power in the cavity of 28.5~W. The sensitivity of the baffle is discussed and the data is compared to scattered light simulations.Comment: 4 pages, 5 figures, 1 tabl

    Controlling Magnetization Reversal and Hyperthermia Efficiency in Core-Shell Iron-Iron Oxide Magnetic Nanoparticles by Tuning the Interphase Coupling

    Get PDF
    Magnetic particle hyperthermia, in which colloidal nanostructures are exposed to an alternating magnetic field, is a promising approach to cancer therapy. Unfortunately, the clinical efficacy of hyperthermia has not yet been optimized. Consequently, routes to improve magnetic particle hyperthermia, such as designing hybrid structures comprised of different phase materials, are actively pursued. Here, we demonstrate enhanced hyperthermia efficiency in relatively large spherical Fe/Fe-oxide core-shell nanoparticles through the manipulation of interactions between the core and shell phases. Experimental results on representative samples with diameters in the range 30-80 nm indicate a direct correlation of hysteresis losses to the observed heating with a maximum efficiency of around 0.9 kW/g. The absolute particle size, the core-shell ratio, and the interposition of a thin wüstite interlayer are shown to have powerful effects on the specific absorption rate. By comparing our measurements to micromagnetic calculations, we have unveiled the occurrence of topologically nontrivial magnetization reversal modes under which interparticle interactions become negligible, aggregates formation is minimized and the energy that is converted into heat is increased. This information has been overlooked until date and is in stark contrast to the existing knowledge on homogeneous particles
    • …
    corecore