2,036 research outputs found
Optimizing single-photon-source heralding efficiency at 1550 nm using periodically poled lithium niobate
We explore the feasibility of using high conversion-efficiency
periodically-poled crystals to produce photon pairs for photon-counting
detector calibrations at 1550 nm. The goal is the development of an appropriate
parametric down-conversion (PDC) source at telecom wavelengths meeting the
requirements of high-efficiency pair production and collection in single
spectral and spatial modes (single-mode fibers). We propose a protocol to
optimize the photon collection, noise levels and the uncertainty evaluation.
This study ties together the results of our efforts to model the single-mode
heralding efficiency of a two-photon PDC source and to estimate the heralding
uncertainty of such a source.Comment: 14 pages, 2 tables and 3 figures, final version accepted by
Metrologi
The Palomar Testbed Interferometer Calibrator Catalog
The Palomar Testbed Interferometer (PTI) archive of observations between 1998
and 2005 is examined for objects appropriate for calibration of optical
long-baseline interferometer observations - stars that are predictably
point-like and single. Approximately 1,400 nights of data on 1,800 objects were
examined for this investigation. We compare those observations to an
intensively studied object that is a suitable calibrator, HD217014, and
statistically compare each candidate calibrator to that object by computing
both a Mahalanobis distance and a Principal Component Analysis. Our hypothesis
is that the frequency distribution of visibility data associated with
calibrator stars differs from non-calibrator stars such as binary stars.
Spectroscopic binaries resolved by PTI, objects known to be unsuitable for
calibrator use, are similarly tested to establish detection limits of this
approach. From this investigation, we find more than 350 observed stars
suitable for use as calibrators (with an additional being
rejected), corresponding to sky coverage for PTI. This approach
is noteworthy in that it rigorously establishes calibration sources through a
traceable, empirical methodology, leveraging the predictions of spectral energy
distribution modeling but also verifying it with the rich body of PTI's on-sky
observations.Comment: 100 pages, 7 figures, 7 tables; to appear in the May 2008ApJS, v176n
Class I major histocompatibility complexes loaded by a periodate trigger
Class I major histocompatibility complexes (MHCs) present peptide ligands on the cell surface for recognition by appropriate cytotoxic T cells. The unstable nature of unliganded MHC necessitates the production of recombinant class I complexes through in vitro refolding reactions in the presence of an added excess of peptides. This strategy is not amenable to high-throughput production of vast collections of class I complexes. To address this issue, we recently designed photocaged MHC ligands that can be cleaved by a UV light trigger in the MHC bound state under conditions that do not affect the integrity of the MHC structure. The results obtained with photocaged MHC ligands demonstrate that conditional MHC ligands can form a generally applicable concept for the creation of defined peptide−MHCs. However, the use of UV exposure to mediate ligand exchange is unsuited for a number of applications, due to the lack of UV penetration through cell culture systems and due to the transfer of heat upon UV irradiation, which can induce evaporation. To overcome these limitations, here, we provide proof-of-concept for the generation of defined peptide−MHCs by chemical trigger-induced ligand exchange. The crystal structure of the MHC with the novel chemosensitive ligand showcases that the ligand occupies the expected binding site, in a conformation where the hydroxyl groups should be reactive to periodate. We proceed to validate this technology by producing peptide−MHCs that can be used for T cell detection. The methodology that we describe here should allow loading of MHCs with defined peptides in cell culture devices, thereby permitting antigen-specific T cell expansion and purification for cell therapy. In addition, this technology will be useful to develop miniaturized assay systems for performing high-throughput screens for natural and unnatural MHC ligands
UV-induced ligand exchange in MHC class I protein crystals
High-throughput structure determination of protein−ligand complexes is central in drug development and structural proteomics. To facilitate such high-throughput structure determination we designed an induced replacement strategy. Crystals of a protein complex bound to a photosensitive ligand are exposed to UV light, inducing the departure of the bound ligand, allowing a new ligand to soak in. We exemplify the approach for a class of protein complexes that is especially recalcitrant to high-throughput strategies: the MHC class I proteins. We developed a UV-sensitive, “conditional”, peptide ligand whose UV-induced cleavage in the crystals leads to the exchange of the low-affinity lytic fragments for full-length peptides introduced in the crystallant solution. This “in crystallo” exchange is monitored by the loss of seleno-methionine anomalous diffraction signal of the conditional peptide compared to the signal of labeled MHC β2m subunit. This method has the potential to facilitate high-throughput crystallography in various protein families
Infrastructure for Detector Research and Development towards the International Linear Collider
The EUDET-project was launched to create an infrastructure for developing and
testing new and advanced detector technologies to be used at a future linear
collider. The aim was to make possible experimentation and analysis of data for
institutes, which otherwise could not be realized due to lack of resources. The
infrastructure comprised an analysis and software network, and instrumentation
infrastructures for tracking detectors as well as for calorimetry.Comment: 54 pages, 48 picture
Hepatitis B Virus Genotyping Among Chronic Hepatitis B Individuals With Resistance to Lamivudine in Shahrekord, Iran
Background: Hepatitis B infection, caused by hepatitis B Virus (HBV), is one of the major global public health problems. Hepatitis B Virus genotypes appear to show varying geographic distribution with possible pathogenic and therapeutic differences. Knowledge of HBV genotypes is very important for clinical treatment. Lamivudine is a nucleoside analogue that is clinically used to treat chronic hepatitis B infection. However, the main problem with the application of lamivudine is the development of viral resistance to the treatment with this anti viral drug. Besides, it has been suggested that lamivudine-resistant HBV may be genotype dependent. However, HBV genotype distribution and the biological relevance in this region are poorly understood. Objectives: The current study aimed to determine hepatitis B genotypes and their correlation with lamivudine-resistant HBV frequency among patients with chronic hepatitis B from Shahrekord, Iran. Methods and Materials: Hepatitis B virus DNA was detected by conventional PCR in some of the serum samples obtained from HBsAg-positive Chronic Hepatitis B (CHB) patients who were referred to Health Centers of Shahrekord for routine monitoring of the disease. Subsequently, using real-time PCR, the DNA samples were used for genotyping and analysis of resistance to lamivudine. Results: The DNA was detected in 23 out of 116 (19.82%) of the studied samples. Genotypes D and C were found in 17 out of 23 (73.9%), and in 6 out of 23 (26.1%) of the samples, respectively. To the authors' best knowledge, the current study is the first report on isolation of Genotype C from Iran. Two out of 17 (11.76%), and 6 out of 6 (100%) of genotypes D and C were resistant to lamivudine, respectively. Resistance to this drug was significantly different between genotypes C and D (P < 0.001). Conclusions: In addition to genotype D, other lamivudine resistant hepatitis B genotypes might be distributed in Iran
Multiplicity dependence of jet-like two-particle correlations in p-Pb collisions at = 5.02 TeV
Two-particle angular correlations between unidentified charged trigger and
associated particles are measured by the ALICE detector in p-Pb collisions at a
nucleon-nucleon centre-of-mass energy of 5.02 TeV. The transverse-momentum
range 0.7 5.0 GeV/ is examined,
to include correlations induced by jets originating from low
momen\-tum-transfer scatterings (minijets). The correlations expressed as
associated yield per trigger particle are obtained in the pseudorapidity range
. The near-side long-range pseudorapidity correlations observed in
high-multiplicity p-Pb collisions are subtracted from both near-side
short-range and away-side correlations in order to remove the non-jet-like
components. The yields in the jet-like peaks are found to be invariant with
event multiplicity with the exception of events with low multiplicity. This
invariance is consistent with the particles being produced via the incoherent
fragmentation of multiple parton--parton scatterings, while the yield related
to the previously observed ridge structures is not jet-related. The number of
uncorrelated sources of particle production is found to increase linearly with
multiplicity, suggesting no saturation of the number of multi-parton
interactions even in the highest multiplicity p-Pb collisions. Further, the
number scales in the intermediate multiplicity region with the number of binary
nucleon-nucleon collisions estimated with a Glauber Monte-Carlo simulation.Comment: 23 pages, 6 captioned figures, 1 table, authors from page 17,
published version, figures at
http://aliceinfo.cern.ch/ArtSubmission/node/161
Short-term efficacy of physical interventions in osteoarthritic knee pain. A systematic review and meta-analysis of randomised placebo-controlled trials.
BACKGROUND: Treatment efficacy of physical agents in osteoarthritis of the knee (OAK) pain has been largely unknown, and this systematic review was aimed at assessing their short-term efficacies for pain relief. METHODS: Systematic review with meta-analysis of efficacy within 1-4 weeks and at follow up at 1-12 weeks after the end of treatment. RESULTS: 36 randomised placebo-controlled trials (RCTs) were identified with 2434 patients where 1391 patients received active treatment. 33 trials satisfied three or more out of five methodological criteria (Jadad scale). The patient sample had a mean age of 65.1 years and mean baseline pain of 62.9 mm on a 100 mm visual analogue scale (VAS). Within 4 weeks of the commencement of treatment manual acupuncture, static magnets and ultrasound therapies did not offer statistically significant short-term pain relief over placebo. Pulsed electromagnetic fields offered a small reduction in pain of 6.9 mm [95% CI: 2.2 to 11.6] (n = 487). Transcutaneous electrical nerve stimulation (TENS, including interferential currents), electro-acupuncture (EA) and low level laser therapy (LLLT) offered clinically relevant pain relieving effects of 18.8 mm [95% CI: 9.6 to 28.1] (n = 414), 21.9 mm [95% CI: 17.3 to 26.5] (n = 73) and 17.7 mm [95% CI: 8.1 to 27.3] (n = 343) on VAS respectively versus placebo control. In a subgroup analysis of trials with assumed optimal doses, short-term efficacy increased to 22.2 mm [95% CI: 18.1 to 26.3] for TENS, and 24.2 mm [95% CI: 17.3 to 31.3] for LLLT on VAS. Follow-up data up to 12 weeks were sparse, but positive effects seemed to persist for at least 4 weeks after the course of LLLT, EA and TENS treatment was stopped. CONCLUSION: TENS, EA and LLLT administered with optimal doses in an intensive 2-4 week treatment regimen, seem to offer clinically relevant short-term pain relief for OAK
Multi-particle azimuthal correlations in p-Pb and Pb-Pb collisions at the CERN Large Hadron Collider
Measurements of multi-particle azimuthal correlations (cumulants) for charged
particles in p-Pb and Pb-Pb collisions are presented. They help address the
question of whether there is evidence for global, flow-like, azimuthal
correlations in the p-Pb system. Comparisons are made to measurements from the
larger Pb-Pb system, where such evidence is established. In particular, the
second harmonic two-particle cumulants are found to decrease with multiplicity,
characteristic of a dominance of few-particle correlations in p-Pb collisions.
However, when a gap is placed to suppress such correlations,
the two-particle cumulants begin to rise at high-multiplicity, indicating the
presence of global azimuthal correlations. The Pb-Pb values are higher than the
p-Pb values at similar multiplicities. In both systems, the second harmonic
four-particle cumulants exhibit a transition from positive to negative values
when the multiplicity increases. The negative values allow for a measurement of
to be made, which is found to be higher in Pb-Pb collisions at
similar multiplicities. The second harmonic six-particle cumulants are also
found to be higher in Pb-Pb collisions. In Pb-Pb collisions, we generally find
which is indicative of a Bessel-Gaussian
function for the distribution. For very high-multiplicity Pb-Pb
collisions, we observe that the four- and six-particle cumulants become
consistent with 0. Finally, third harmonic two-particle cumulants in p-Pb and
Pb-Pb are measured. These are found to be similar for overlapping
multiplicities, when a gap is placed.Comment: 25 pages, 11 captioned figures, 3 tables, authors from page 20,
published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/87
- …
