261 research outputs found

    Implantation and the Fetal Health

    Get PDF
    Implantation is one of the crucial periods in human reproduction. Increasing body of evidence suggests that the improper (dysfunctional) implantation and the formation of the placenta can endanger life and health of both the fetus and the mother, during prenatal life and decades after delivery. The idea of the inverted pyramid of prenatal care has emerged in the recent years, as the early detection and prevention of health disorders of the fetus are specially focusing on the first trimester. By applying this principle, disorders in the perinatal period could be prevented or treated with better outcome. The changes that lead to the deficient implantation should be sought in the preimplantation period, in relation between the embryo and the endometrium. It is possible that the time is approaching when the disorders of the pregnancy caused by dysfunctional implantation would be the indication for the application of a natural IVF (without ovarian stimulation) with the use of new biotechnological achievements. For better results of the perinatal medicine, it is necessary to apply earlier (in the preconception and preimplantation periods) the therapy based on the subcellular and genetic level by applying the latest biotechnological procedures

    Reinforcement Learning Approaches for the Orienteering Problem with Stochastic and Dynamic Release Dates

    Full text link
    In this paper, we study a sequential decision making problem faced by e-commerce carriers related to when to send out a vehicle from the central depot to serve customer requests, and in which order to provide the service, under the assumption that the time at which parcels arrive at the depot is stochastic and dynamic. The objective is to maximize the number of parcels that can be delivered during the service hours. We propose two reinforcement learning approaches for solving this problem, one based on a policy function approximation (PFA) and the second on a value function approximation (VFA). Both methods are combined with a look-ahead strategy, in which future release dates are sampled in a Monte-Carlo fashion and a tailored batch approach is used to approximate the value of future states. Our PFA and VFA make a good use of branch-and-cut-based exact methods to improve the quality of decisions. We also establish sufficient conditions for partial characterization of optimal policy and integrate them into PFA/VFA. In an empirical study based on 720 benchmark instances, we conduct a competitive analysis using upper bounds with perfect information and we show that PFA and VFA greatly outperform two alternative myopic approaches. Overall, PFA provides best solutions, while VFA (which benefits from a two-stage stochastic optimization model) achieves a better tradeoff between solution quality and computing time

    Location of charging stations in electric car sharing systems

    Get PDF
    Electric vehicles are prime candidates for use within urban car sharing systems, both from economic and environmental perspectives. However, their relatively short range necessitates frequent and rather time-consuming recharging throughout the day. Thus, charging stations must be built throughout the system's operational area where cars can be charged between uses. In this work, we introduce and study an optimization problem that models the task of finding optimal locations and sizes for charging stations, using the number of expected trips that can be accepted (or their resulting revenue) as a gauge of quality. Integer linear programming formulations and construction heuristics are introduced, and the resulting algorithms are tested on grid-graph-based instances, as well as on real-world instances from Vienna. The results of our computational study show that the best-performing exact algorithm solves most of the benchmark instances to optimality and usually provides small optimality gaps for the remaining ones, whereas our heuristics provide high-quality solutions very quickly. Our algorithms also provide better solutions than a sequential approach that considers strategic and operational decisions separately. A cross-validation study analyzes the algorithms' performance in cases where demand is uncertain and shows the advantage of combining individual solutions into a single consensus solution, and a simulation study investigates their behavior in car sharing systems that provide their customers with more flexibility regarding vehicle selection

    An Exact Method for Assortment Optimization under the Nested Logit Model

    Get PDF
    We study the problem of finding an optimal assortment of products maximizing the expected revenue, in which customer preferences are modeled using a Nested Logit choice model. This problem is known to be polynomially solvable in a specific case and NP-hard otherwise, with only approximation algorithms existing in the literature. For the NP-hard cases, we provide a general exact method that embeds a tailored Branch-and-Bound algorithm into a fractional programming framework. Contrary to the existing literature, in which assumptions are imposed on either the structure of nests or the combination and characteristics of products, no assumptions on the input data are imposed, and hence our approach can solve the most general problem setting. We show that the parameterized subproblem of the fractional programming scheme, which is a binary highly non-linear optimization problem, is decomposable by nests, which is a main advantage of the approach. To solve the subproblem for each nest, we propose a two-stage approach. In the first stage, we identify those products that are undoubtedly beneficial to offer, or not, which can significantly reduce the problem size. In the second stage, we design a tailored Branch-and-Bound algorithm with problem-specific upper bounds. Numerical results show that the approach is able to solve assortment instances with up to 5,000 products per nest. The most challenging instances for our approach are those in which the dissimilarity parameters of nests can be either less or greater than one

    Three Network Design Problems for Community Energy Storage

    Full text link
    In this paper, we develop novel mathematical models to optimize utilization of community energy storage (CES) by clustering prosumers and consumers into energy sharing communities/microgrids in the context of a smart city. Three different microgrid configurations are modeled using a unifying mixed-integer linear programming formulation. These configurations represent three different business models, namely: the island model, the interconnected model, and the Energy Service Companies model. The proposed mathematical formulations determine the optimal households' aggregation as well as the location and sizing of CES. To overcome the computational challenges of treating operational decisions within a multi-period decision making framework, we also propose a decomposition approach to accelerate the computational time needed to solve larger instances. We conduct a case study based on real power consumption, power generation, and location network data from Cambridge, MA. Our mathematical models and the underlying algorithmic framework can be used in operational and strategic planning studies on smart grids to incentivize the communitarian distributed renewable energy generation and to improve the self-consumption and self-sufficiency of the energy sharing community. The models are also targeted to policymakers of smart cities, utility companies, and Energy Service Companies as the proposed models support decision making on renewable energy related projects investments

    Budgeting in International Humanitarian Organizations

    Get PDF
    Problem definition: International humanitarian organizations (IHOs) prepare a detailed annual allocation plan for operations that are conducted in the countries they serve. The annual plan is strongly affected by the available financial budget. The budget of IHOs is derived from donations, which are typically limited, uncertain, and to a large extent earmarked for specific countries or programs. These factors, together with the specific utility function of IHOs, render budgeting for IHOs a challenging managerial problem. In this paper, we develop an approach to optimize budget allocation plans for each country of operations. Academic/practical relevance: The current research provides a better understanding of the budgeting problem in IHOs given the increasing interest of the operations management community for nonprofit operations. Methodology: We model the problem as a two-stage stochastic optimization model with a concave utility function and identify a number of analytical properties for the problem. We develop an efficient generalized Benders decomposition algorithm as well as a fast heuristic. Results: Using data from the International Committee of the Red Cross, our results indicate 21.3% improvement in the IHO’s utility by adopting stochastic programming instead of the expected value solution. Moreover, our solution approach is computationally more efficient than other approaches. Managerial implications: Our analysis highlights the importance of nonearmarked donations for the overall performance of IHOs. We also find that putting pressure on IHOs to fulfill the targeted missions (e.g., by donors or media) results in lower beneficiaries’ welfare. Moreover, the IHOs benefit from negative correlation among donations. Finally, our findings indicate that, if donors allow the IHO to allocate unused earmarked donations to other delegations, the performance of the IHO improves significantly

    The Influence of Bodily Activity on Retaining the Functionality of the Hand in Aged Persons

    Get PDF
    Degenerative changes of the hands is one of the leading problems of the elderly because of the inability to perform daily activities. This study aimed to determine whether the application of physical activities and exercises was effective in maintaining and /or improving hand function and the overall quality of life of older people in the institution. The instruments applied were: SF-36, keeping a diary for each subject in certain categories (exercise, creative therapy, communication, cognitive, motor and sensory abilities), Barthel Index, vigorimeter, test of hand function, satisfaction with life scale. Research has shown that the program of physical activities that are conducted throughout the year can maintain and improve hand function in older persons who are placed in an institution which contributes to the quality of their lives in terms of performing daily activities. As a conclusion from the results, it is proposed to introduce a model of physical activity into the institutional form of care for the elderly

    A New General-Purpose Algorithm for Mixed-Integer Bilevel Linear Programs

    Get PDF
    Bilevel optimization problems are very challenging optimization models arising in many important practical contexts, including pricing mechanisms in the energy sector, airline and telecommunication industry, transportation networks, critical infrastructure defense, and machine learning. In this paper, we consider bilevel programs with continuous and discrete variables at both levels, with linear objectives and constraints (continuous upper level variables, if any, must not appear in the lower level problem). We propose a general-purpose branch-and-cut exact solution method based on several new classes of valid inequalities, which also exploits a very effective bilevel-specific preprocessing procedure. An extensive computational study is presented to evaluate the performance of various solution methods on a common testbed of more than 800 instances from the literature and 60 randomly generated instances. Our new algorithm consistently outperforms (often by a large margin) alternative state-of-the-art methods from the literature, including methods exploiting problem-specific information for special instance classes. In particular, it solves to optimality more than 300 previously unsolved instances from the literature. To foster research on this challenging topic, our solver is made publicly available online
    • …
    corecore