86 research outputs found

    Universal digital filtering for denoising volumetric retinal OCT and OCT angiography in 3D shearlet domain

    Full text link
    Retinal optical coherence tomography (OCT) and OCT angiography (OCTA) suffer from the degeneration of image quality due to speckle noise and bulk-motion noise, respectively. Because the cross-sectional retina has distinct features in OCT and OCTA B-scans, existing digital filters that can denoise OCT efficiently are unable to handle the bulk-motion noise in OCTA. In this Letter, we propose a universal digital filtering approach that is capable of minimizing both types of noise. Considering the retinal capillaries in OCTA are hard to differentiate in B-scans while having distinct curvilinear structures in 3D volumes, we decompose the volumetric OCT and OCTA data with 3D shearlets thus efficiently separate the retinal tissue and vessels from the noise in this transform domain. Compared with wavelets and curvelets, the shearlets provide better representation of the layer edges in OCT and the vasculature in OCTA. Qualitative and quantitative results show the proposed method outperforms the state-of-the-art OCT and OCTA denoising methods. Besides, the superiority of 3D denoising is demonstrated by comparing the 3D shearlet filtering with its 2D counterpart.Comment: This version has been accepted for publication in Opt. Let

    Antiferromagnetic magnonic charge current generation via ultrafast optical excitation

    Full text link
    N\'eel spin-orbit torque allows a charge current pulse to efficiently manipulate the N\'eel vector in antiferromagnets, which offers a unique opportunity for ultrahigh density information storage with high speed. However, the reciprocal process of N\'eel spin-orbit torque, the generation of ultrafast charge current in antiferromagnets has not been demonstrated. Here, we report the experimental observation of charge current generation in antiferromagnetic metallic Mn2Au thin films using ultrafast optical excitation. The ultrafast laser pulse excites antiferromagnetic magnons, resulting in instantaneous non-equilibrium spin polarization at the antiferromagnetic spin sublattices with broken spatial symmetry. Then the charge current is generated directly via spin-orbit fields at the two sublattices, which is termed as the reciprocal phenomenon of N\'eel spin-orbit torque, and the associated THz emission can be detected at room temperature. Besides the fundamental significance on the Onsager reciprocity, the observed magnonic charge current generation in antiferromagnet would advance the development of antiferromagnetic THz emitter.Comment: 15 pages, 4 figures, this work was submitted to Nature Communications on Jan. 4th, 2023, now is under the 3rd review proces

    MetaGPT: Meta Programming for Multi-Agent Collaborative Framework

    Full text link
    Recently, remarkable progress has been made in automated task-solving through the use of multi-agents driven by large language models (LLMs). However, existing works primarily focuses on simple tasks lacking exploration and investigation in complicated tasks mainly due to the hallucination problem. This kind of hallucination gets amplified infinitely as multiple intelligent agents interact with each other, resulting in failures when tackling complicated problems.Therefore, we introduce MetaGPT, an innovative framework that infuses effective human workflows as a meta programming approach into LLM-driven multi-agent collaboration. In particular, MetaGPT first encodes Standardized Operating Procedures (SOPs) into prompts, fostering structured coordination. And then, it further mandates modular outputs, bestowing agents with domain expertise paralleling human professionals to validate outputs and reduce compounded errors. In this way, MetaGPT leverages the assembly line work model to assign diverse roles to various agents, thus establishing a framework that can effectively and cohesively deconstruct complex multi-agent collaborative problems. Our experiments conducted on collaborative software engineering tasks illustrate MetaGPT's capability in producing comprehensive solutions with higher coherence relative to existing conversational and chat-based multi-agent systems. This underscores the potential of incorporating human domain knowledge into multi-agents, thus opening up novel avenues for grappling with intricate real-world challenges. The GitHub repository of this project is made publicly available on: https://github.com/geekan/MetaGP

    Magnon-mediated interlayer coupling in an all-antiferromagnetic junction

    Full text link
    The interlayer coupling mediated by fermions in ferromagnets brings about parallel and anti-parallel magnetization orientations of two magnetic layers, resulting in the giant magnetoresistance, which forms the foundation in spintronics and accelerates the development of information technology. However, the interlayer coupling mediated by another kind of quasi-particle, boson, is still lacking. Here we demonstrate such a static interlayer coupling at room temperature in an antiferromagnetic junction Fe2O3/Cr2O3/Fe2O3, where the two antiferromagnetic Fe2O3 layers are functional materials and the antiferromagnetic Cr2O3 layer serves as a spacer. The N\'eel vectors in the top and bottom Fe2O3 are strongly orthogonally coupled, which is bridged by a typical bosonic excitation (magnon) in the Cr2O3 spacer. Such an orthogonally coupling exceeds the category of traditional collinear interlayer coupling via fermions in ground state, reflecting the fluctuating nature of the magnons, as supported by our magnon quantum well model. Besides the fundamental significance on the quasi-particle-mediated interaction, the strong coupling in an antiferromagnetic magnon junction makes it a realistic candidate for practical antiferromagnetic spintronics and magnonics with ultrahigh-density integration.Comment: 19 pages, 4 figure
    • …
    corecore