6 research outputs found
Enhanced Characterization of Drug Metabolism and the Influence of the Intestinal Microbiome: A Pharmacokinetic, Microbiome, and Untargeted Metabolomics Study.
Determining factors that contribute to interindividual and intra-individual variability in pharmacokinetics (PKs) and drug metabolism is essential for the optimal use of drugs in humans. Intestinal microbes are important contributors to variability; however, such gut microbe-drug interactions and the clinical significance of these interactions are still being elucidated. Traditional PKs can be complemented by untargeted mass spectrometry coupled with molecular networking to study the intricacies of drug metabolism. To show the utility of molecular networking on metabolism we investigated the impact of a 7-day course of cefprozil on cytochrome P450 (CYP) activity using a modified Cooperstown cocktail and assessed plasma, urine, and fecal data by targeted and untargeted metabolomics and molecular networking in healthy volunteers. This prospective study revealed that cefprozil decreased the activities of CYP1A2, CYP2C19, and CYP3A, decreased alpha diversity and increased interindividual microbiome variability. We further demonstrate a relationship between the loss of microbiome alpha diversity caused by cefprozil and increased drug and metabolite formation in fecal samples. Untargeted metabolomics/molecular networking revealed several omeprazole metabolites that we hypothesize may be metabolized by both CYP2C19 and bacteria from the gut microbiome. Our observations are consistent with the hypothesis that factors that perturb the gut microbiome, such as antibiotics, alter drug metabolism and ultimately drug efficacy and toxicity but that these effects are most strongly revealed on a per individual basis
Recommended from our members
Optimizing sequencing protocols for leaderboard metagenomics by combining long and short reads.
As metagenomic studies move to increasing numbers of samples, communities like the human gut may benefit more from the assembly of abundant microbes in many samples, rather than the exhaustive assembly of fewer samples. We term this approach leaderboard metagenome sequencing. To explore protocol optimization for leaderboard metagenomics in real samples, we introduce a benchmark of library prep and sequencing using internal references generated by synthetic long-read technology, allowing us to evaluate high-throughput library preparation methods against gold-standard reference genomes derived from the samples themselves. We introduce a low-cost protocol for high-throughput library preparation and sequencing
Recommended from our members
Inhibition of lysine acetyltransferase KAT6 in ER+HER2- metastatic breast cancer: a phase 1 trial.
Inhibition of histone lysine acetyltransferases (KATs) KAT6A and KAT6B has shown antitumor activity in estrogen receptor-positive (ER+) breast cancer preclinical models. PF-07248144 is a selective catalytic inhibitor of KAT6A and KAT6B. In the present study, we report the safety, pharmacokinetics (PK), pharmacodynamics, efficacy and biomarker results from the first-in-human, phase 1 dose escalation and dose expansion study (n = 107) of PF-07248144 monotherapy and fulvestrant combination in heavily pretreated ER+ human epidermal growth factor receptor-negative (HER2-) metastatic breast cancer (mBC). The primary objectives of assessing the safety and tolerability and determining the recommended dose for expansion of PF-07248144, as monotherapy and in combination with fulvestrant, were met. Secondary endpoints included characterization of PK and evaluation of antitumor activity, including objective response rate (ORR) and progression-free survival (PFS). Common treatment-related adverse events (any grade; grades 3-4) included dysgeusia (83.2%, 0%), neutropenia (59.8%, 35.5%) and anemia (48.6%, 13.1%). Exposure was approximately dose proportional. Antitumor activity was observed as monotherapy. For the PF-07248144-fulvestrant combination (n = 43), the ORR (95% confidence interval (CI)) was 30.2% (95% CI = 17.2-46.1%) and the median PFS was 10.7 (5.3-not evaluable) months. PF-07248144 demonstrated a tolerable safety profile and durable antitumor activity in heavily pretreated ER+HER2- mBC. These findings establish KAT6A and KAT6B as druggable cancer targets, provide clinical proof of concept and reveal a potential avenue to treat mBC. clinicaltrial.gov registration: NCT04606446
Finishing the euchromatic sequence of the human genome
The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
Recommended from our members
Maraviroc Population Pharmacokinetics Within the First 6 Weeks of Life.
BACKGROUND: Treatment and prophylaxis options for neonatal HIV are limited. This study aimed to develop a population pharmacokinetic model to characterize the disposition of maraviroc in neonates to inform dosing regimens and expand available options. METHODS: Using maraviroc concentrations from neonates who received either a single dose or multiple doses of 8 mg/kg of maraviroc in the first 6 weeks of life, a population pharmacokinetic model was developed to determine the effects of age, sex, maternal efavirenz exposure and concomitant ARV therapy on maraviroc disposition. The final model was used in Monte Carlo simulations to generate expected exposures with recommended dosing regimens. RESULTS: A total of 396 maraviroc concentrations, collected in the first 4 days of life, at 1 week, at 4 weeks and at 6 weeks, from 44 neonates were included in the analysis. After allometrically scaling for weight, age less than 4 days was associated with a 44% decreased apparent clearance compared with participants 7 days to 6 weeks of life. There were no differences identified in apparent clearance or volume of distribution from ages 7 days to 6 weeks, sex, maternal efavirenz exposure or concomitant nevirapine therapy. Monte Carlo simulations with FDA-approved weight band dosing resulted in the majority of simulated patients (84.3%) achieving an average concentration of ≥75 ng/mL. CONCLUSIONS: While maraviroc apparent clearance is decreased in the first few days of life, the current FDA-approved maraviroc weight band dosing provides maraviroc exposures for neonates in the first 6 weeks of life, which were consistent with adult maraviroc exposure range. Maraviroc provides another antiretroviral treatment option for very young infants