221 research outputs found

    Amorphization, Crystallization, and Magnetic Properties of Melt-Spun SmCo

    Get PDF

    A quantitative assessment of distributions and sources of tropospheric halocarbons measured in Singapore.

    Get PDF
    This work reports the first ground-based atmospheric measurements of 26 halocarbons in Singapore, an urban-industrial city-state in Southeast (SE) Asia. A total of 166 whole air canister samples collected during two intensive 7 Southeast Asian Studies (7SEAS) campaigns (August-October 2011 and 2012) were analyzed for C1-C2 halocarbons using gas chromatography-electron capture/mass spectrometric detection. The halocarbon dataset was supplemented with measurements of selected non-methane hydrocarbons (NMHCs), C1-C5 alkyl nitrates, sulfur gases and carbon monoxide to better understand sources and atmospheric processes. The median observed atmospheric mixing ratios of CFCs, halons, CCl4 and CH3CCl3 were close to global tropospheric background levels, with enhancements in the 1-17% range. This provided the first measurement evidence from SE Asia of the effectiveness of Montreal Protocol and related national-scale regulations instituted in the 1990s to phase-out ozone depleting substances (ODS). First- and second-generation CFC replacements (HCFCs and HFCs) dominated the atmospheric halocarbon burden with HFC-134a, HCFC-22 and HCFC-141b exhibiting enhancements of 39-67%. By combining near-source measurements in Indonesia with receptor data in Singapore, regionally transported peat-forest burning smoke was found to impact levels of several NMHCs (ethane, ethyne, benzene, and propane) and short-lived halocarbons (CH3I, CH3Cl, and CH3Br) in a subset of the receptor samples. The strong signatures of these species near peat-forest fires were potentially affected by atmospheric dilution/mixing during transport and by mixing with substantial urban/regional backgrounds at the receptor. Quantitative source apportionment was carried out using positive matrix factorization (PMF), which identified industrial emissions related to refrigeration, foam blowing, and solvent use in chemical, pharmaceutical and electronics industries as the major source of halocarbons (34%) in Singapore. This was followed by marine and terrestrial biogenic activity (28%), residual levels of ODS from pre-Montreal Protocol operations (16%), seasonal incidences of peat-forest smoke (13%), and fumigation related to quarantine and pre-shipment (QPS) applications (7%)

    Experimental Study for Optimizing Pedestrian Flows at Bottlenecks of Subway Stations

    Get PDF
    In subway stations, bottlenecks are the narrowed areas that reduce pedestrian flows in channels. Because pedestrians at bottlenecks are forced to dense together, bottlenecks decrease flow efficiency and pedestrians’ transfer comfort and may trigger serious crowd disasters such as trampling. This study used pedestrian experiments to investigate the methods of optimizing pedestrian traffic at bottlenecks of subway stations. Three optimization measures were proposed and evaluated by analyzing the characteristics of pedestrian flows, including efficiency, smoothness, and security. In this paper, setting the rear sides of the bottleneck entrance as straight and surface funnel shapes is called straight funnel shape and surface funnel shape, respectively. Setting a column at a bottleneck is called the column obstacle. The results showed that when efficiency or security come first, a column on the left is recommended; when comfort comes first, a concave funnel is recommended; when comprehensiveness is prioritized, a column on the left is recommended. Moreover, the larger the volume, the optimization is more obvious. Although many  bottlenecks cannot be prevented when subway stations are constructed, the proposed optimization measures may help ease their adverse effects by improving facility efficiency, smoothness, and security, and by providing recommendations for designing and managing subway stations.</p

    Association between monocyte lymphocyte ratio and abdominal aortic calcification in US adults: A cross-sectional study

    Get PDF
    Background This study aimed to evaluate the association between Monocyte Lymphocyte Ratio (MLR) and Abdominal Aortic Calcification (AAC) in adults over 40 years of age in the United States. Methods Data were collected from the 2013–2014 National Health and Nutrition Examination Survey (NHANES). AAC was quantified by the Kauppila score system based on dual-energy X-Ray absorptiometry. Severe AAC was defined as a total AAC score &gt; 6. The lymphocyte count and monocyte count can be directly obtained from laboratory data files. Multivariable logistic regression models were used to determine the association between MLR and the AAC score and severe AAC. Results A total of 3,045 participants were included in the present study. After adjusting for multiple covariates, MLR was positively associated with higher AAC score (β&nbsp;=&nbsp;0.21, 95% CI 0.07, 0.34, p&nbsp;=&nbsp;0.0032) and the odds of severe AAC increased by 14% per 0.1 unit increase in the MLR (OR&nbsp;=&nbsp;1.14, 95% CI 1.00, 1.31, p&nbsp;=&nbsp;0.0541). The Odds Ratio (OR) (95% CI) of severe AAC for participants in MLR tertile 3 was 1.88 (1.02, 3.47) compared with those in tertile 1 (p for trend&nbsp;=&nbsp;0.0341). Subgroup analyses showed that a stronger association was detected in the elderly compared with non-elderly (p for interaction&nbsp;=&nbsp;0.0346) and diabetes compared with non-diabetes (borderline significant p for interaction&nbsp;=&nbsp;0.0578). Conclusion In adults in the United States, MLR was associated with higher AAC scores and a higher probability of severe AAC. MLR may become a promising tool to predict the risk of AAC

    Anticonvulsant and sedative effect of Fufang Changniu pills and probable mechanism of action in mice

    Get PDF
    Purpose: To investigate the anticonvulsant and sedative effects of Fufang Changniu Pills (FCP) and its probable mechanism of action in mice.Methods: The water decoction of FCP was prepared and the main constituents were determined by high performance liquid chromatography (HPLC). The anticonvulsant activities of FCP were evaluated by maximal electroshock (MES) and  pentylenetetrazole (PTZ)-induced seizures in mice. Pentobarbital sodium-induced sleeping time and locomotor activity measurements were performed to evaluate the sedative effects of FCP in mice. Finally, PTZ-induced chronic seizures were  established, and expressions of gamma-aminobutyric acid A receptor (GABA-A) and glutamic acid decarboxylase 65 (GAD65) in the brains of the mice were assayed by western blot in order to explore the probable mechanisms of action of the drug.Results: Gallic acid, liquiritin, cinnamyl alcohol, cinnamic acid and glycyrrhizic acid were detected in FCP decoction. FCP (50, 100 and 200 mg/kg) showed significant anticonvulsant and sedative effects on epileptic mice induced by MES (p &lt; 0.05) and PTZ (p &lt; 0.05). Moreover, pentobarbital sodium-induced sleeping time and  locomotor activity tests showed that FCP possesses sedative effect (p &lt; 0.05). Western blot data indicate that FCP significantly up-regulated GABA-A and GAD 65 in the brains of chronic epileptic rats (p &lt; 0.05).Conclusion: FCP has significant anticonvulsant and sedative effects, and the  mechanism of its action may be related to the up-regulation of GABA-A and GAD 65 in mice brain.Keywords: Epilepsy, Fufang Changniu pills, Anticonvulsant, Sedative effect,  Gamma-aminobutyric acid, Glutamate dehydrogenas

    UAV-assisted energy-efficient data gathering method of mine IoT after disaster

    Get PDF
    Mine Internet of Things (MIoT) is of great significance in mine production monitoring and disaster prediction. However, the MIoT is easily affected by mine accidents in data transmission. Accidents often lead to the damage of IoT nodes (IoTN). The surviving IoTNs are limited by low quantity and energy, so it is difficult to complete the task of collecting and transmitting a large number of monitoring data in the roadway. In order to ensure the reliable and energy-efficient data communication of MIoT after disaster, an unmanned aerial vehicle (UAV)-assisted clustered MIoT communication system architecture is established. Based on this, an UAV-assisted data gathering method based on clustering and A* search is proposed. Firstly, the energy consumption of IoTNs and the path length of UAV are considered to construct the objective function. The optimal K is determined by plotting the relationship between the variance distance from the node to the cluster center and the path length of UAV data gathering and different K values. Then the K-means algorithm is used to divide all IoTNs into K clusters. Next, by considering the data gathering energy consumption of UAV and IoTNs, the path planning problem of UAV is established as an optimization problem to minimize the overall energy consumption of MIoT system, and an improved A* search algorithm for UAV data collection path planning is proposed. In this algorithm, the starting point of UAV and all clustering information are input into A * network by using the pointer network. A group of sorted cluster heads output by A * network is the flight path of UAV. Simulation results show that compared with the flat-based UAV data gathering method, the proposed data gathering method significantly reduces the energy consumption of UAV; Compared with two clustered-based UAV data acquisition methods, the proposed method effectively reduces the average and total energy consumption of IoTNs. Therefore, the proposed UAV-assisted data gathering method improves the energy consumption of the MIoT system after disaster, prolongs the network lifetime, and plays an important role in improving the reliability of the MIoT data gathering system after disaster

    PBRM1 acts as a p53 lysine-acetylation reader to suppress renal tumor growth.

    Get PDF
    p53 acetylation is indispensable for its transcriptional activity and tumor suppressive function. However, the identity of reader protein(s) for p53 acetylation remains elusive. PBRM1, the second most highly mutated tumor suppressor gene in kidney cancer, encodes PBRM1. Here, we identify PBRM1 as a reader for p53 acetylation on lysine 382 (K382Ac) through its bromodomain 4 (BD4). Notably, mutations on key residues of BD4 disrupt recognition of p53 K382Ac. The mutation in BD4 also reduces p53 binding to promoters of target genes such as CDKN1A (p21). Consequently, the PBRM1 BD4 mutant fails to fully support p53 transcriptional activity and is defective as a tumor suppressor. We also find that expressions of PBRM1 and p21 correlate with each other in human kidney cancer samples. Our findings uncover a tumor suppressive mechanism of PBRM1 in kidney cancer and provide a mechanistic insight into the crosstalk between p53 and SWI/SNF complexes

    A Dynamic Time Warping Algorithm Based Analysis of Pedestrian Shockwaves at Bottleneck

    Get PDF
    Since the quantitative methodology analysis of the high-density pedestrian shockwaves at a bottleneck is limited, this paper proposes a dynamic time warping (DTW) algorithm for identifying, analyzing, and verifying the shockwaves. A set of real-world trajectory data is used to illustrate the proposed algorithm. Results show that the DTW algorithm is capable of depicting the pedestrian shockwaves elaborately and accurately. Results also show that the shockwave velocity is unsteady, as throughout time the gathering wave velocity and the evanescent wave velocity are decreasing and increasing, respectively. The mutual influence between followers and leaders is decreased when the shockwave spreads. There is a linear relationship between the shockwave velocity and density. Furthermore, singularities present a potential match solution to help identify the changing of pedestrian behaviors. The DTW algorithm for evaluating the pedestrian system stability has significant intrinsic features in the pedestrian traffic control and management

    HER2 Targeted Molecular MR Imaging Using a De Novo Designed Protein Contrast Agent

    Get PDF
    The application of magnetic resonance imaging (MRI) to non-invasively assess disease biomarkers has been hampered by the lack of desired contrast agents with high relaxivity, targeting capability, and optimized pharmacokinetics. We have developed a novel MR imaging probe targeting to HER2, a biomarker for various cancer types and a drug target for anti-cancer therapies. This multimodal HER20targeted MR imaging probe integrates a de novo designed protein contrast agent with a high affinity HER2 affibody and a near IR fluorescent dye. Our probe can differentially monitor tumors with different expression levels of HER2 in both human cell lines and xenograft mice models. In addition to its 100-fold higher dose efficiency compared to clinically approved non-targeting contrast agent DTPA, our developed agent also exhibits advantages in crossing the endothelial boundary, tissue distribution, and tumor tissue retention over reported contrast agents as demonstrated by even distribution of the imaging probe across the entire tumor mass. This contrast agent will provide a powerful tool for quantitative assessment of molecular markers, and improved resolution for diagnosis, prognosis and drug discovery

    Glucitol-core containing gallotannins-enriched red maple (Acer rubrum) leaves extract alleviated obesity via modulating short-chain fatty acid production in high-fat diet-fed mice

    Get PDF
    Glucitol-core containing gallotannins (GCGs) are characteristic constituents of the red maple (Acer rubrum) species. To pursue the development of red maple for nutraceutical applications, GCGs-enriched red maple leaves extract (MLE) was evaluated for its effects on obesity, gut dysbiosis and short chain fatty acids (SCFAs) production. Our results demonstrated that MLE alleviated high-fat diet-induced obesity, reduced body weight gain and fat mass, improved liver steatosis and insulin resistance, and mitigated adipose hypertrophy and inflammation. Additionally, MLE increased total SCFAs, acetic acid and n-butyric acid content, but exerted no impact on propionic acid production. Moreover, MLE modulated gut microbiota community structure and certain bacteria relative abundance, including Prevotella and Eubacterium. Our work firstly reports a potential association between colon-derived SCFAs production and metabolic improvement due to GCGs-enriched red maple leaves extract administration, and highlights the utilization of red maple gallotannins as a dietary ingredient for preventing obesity and related metabolic diseases
    • …
    corecore