31 research outputs found

    Computational reconstruction of tissue-specific metabolic models: application to human liver metabolism

    Get PDF
    The first computational approach for the rapid generation of genome-scale tissue-specific models from a generic species model.A genome scale model of human liver metabolism, which is comprehensively tested and validated using cross-validation and the ability to carry out complex hepatic metabolic functions.The model's flux predictions are shown to correlate with flux measurements across a variety of hormonal and dietary conditions, and are successfully used to predict biomarker changes in genetic metabolic disorders, both with higher accuracy than the generic human model

    Predicting selective drug targets in cancer through metabolic networks

    Get PDF
    The authors develop a genome-scale model of cancer metabolism and use it to predict genes that are essential for cancer cell growth. An array of target combinations are then identified that could potentially provide novel selective treatments for specific cancers

    Genome-scale study reveals reduced metabolic adaptability in patients with non-alcoholic fatty liver disease

    Get PDF
    Non-alcoholic fatty liver disease (NAFLD) is a major risk factor leading to chronic liver disease and type 2 diabetes. Here we chart liver metabolic activity and functionality in NAFLD by integrating global transcriptomic data, from human liver biopsies, and metabolic flux data, measured across the human splanchnic vascular bed, within a genome-scale model of human metabolism. We show that an increased amount of liver fat induces mitochondrial metabolism, lipolysis, glyceroneogenesis and a switch from lactate to glycerol as substrate for gluconeogenesis, indicating an intricate balance of exacerbated opposite metabolic processes in glycemic regulation. These changes were associated with reduced metabolic adaptability on a network level in the sense that liver fat accumulation puts increasing demands on the liver to adaptively regulate metabolic responses to maintain basic liver functions. We propose that failure to meet excessive metabolic challenges coupled with reduced metabolic adaptability may lead to a vicious pathogenic cycle leading to the co-morbidities of NAFLD.Peer reviewe

    Perturb-Seq: Dissecting Molecular Circuits with Scalable Single-Cell RNA Profiling of Pooled Genetic Screens

    Get PDF
    Genetic screens help infer gene function in mammalian cells, but it has remained difficult to assay complex phenotypes—such as transcriptional profiles—at scale. Here, we develop Perturb-seq, combining single-cell RNA sequencing (RNA-seq) and clustered regularly interspaced short palindromic repeats (CRISPR)-based perturbations to perform many such assays in a pool. We demonstrate Perturb-seq by analyzing 200,000 cells in immune cells and cell lines, focusing on transcription factors regulating the response of dendritic cells to lipopolysaccharide (LPS). Perturb-seq accurately identifies individual gene targets, gene signatures, and cell states affected by individual perturbations and their genetic interactions. We posit new functions for regulators of differentiation, the anti-viral response, and mitochondrial function during immune activation. By decomposing many high content measurements into the effects of perturbations, their interactions, and diverse cell metadata, Perturb-seq dramatically increases the scope of pooled genomic assays. Keywords: single-cell RNA-seq; pooled screen; CRISPR; epistasis; genetic interaction

    DIALOGUE maps multicellular programs in tissue from single-cell or spatial transcriptomics data

    No full text
    Deciphering the functional interactions of cells in tissues remains a major challenge. Here we describe DIALOGUE, a method to systematically uncover multicellular programs (MCPs)-combinations of coordinated cellular programs in different cell types that form higher-order functional units at the tissue level-from either spatial data or single-cell data obtained without spatial information. Tested on spatial datasets from the mouse hypothalamus, cerebellum, visual cortex and neocortex, DIALOGUE identified MCPs associated with animal behavior and recovered spatial properties when tested on unseen data while outperforming other methods and metrics. In spatial data from human lung cancer, DIALOGUE identified MCPs marking immune activation and tissue remodeling. Applied to single-cell RNA sequencing data across individuals or regions, DIALOGUE uncovered MCPs marking Alzheimer's disease, ulcerative colitis and resistance to cancer immunotherapy. These programs were predictive of disease outcome and predisposition in independent cohorts and included risk genes from genome-wide association studies. DIALOGUE enables the analysis of multicellular regulation in health and disease

    Fumarate induces redox-dependent senescence by modifying glutathione metabolism

    Get PDF
    Mutations in the tricarboxylic acid (TCA) cycle enzyme ​fumarate hydratase (​FH) are associated with a highly malignant form of renal cancer. We combined analytical chemistry and metabolic computational modelling to investigate the metabolic implications of ​FH loss in immortalized and primary mouse kidney cells. Here, we show that the accumulation of ​fumarate caused by the inactivation of ​FH leads to oxidative stress that is mediated by the formation of ​succinicGSH, a covalent adduct between ​fumarate and ​glutathione. Chronic succination of ​GSH, caused by the loss of ​FH, or by exogenous ​fumarate, leads to persistent oxidative stress and cellular senescence in vitro and in vivo. Importantly, the ablation of ​p21, a key mediator of senescence, in ​Fh1-deficient mice resulted in the transformation of benign renal cysts into a hyperplastic lesion, suggesting that ​fumarate-induced senescence needs to be bypassed for the initiation of renal cancers
    corecore