5,185 research outputs found
Inclusive double-quarkonium production at the Large Hadron Collider
Based on the nonrelativistic QCD (NRQCD) factorization formalism, we
investigate inclusive productions of two spin-triplet S-wave quarkonia
pp->2J/psi+X, 2Upsilon+X, and J/psi+Upsilon+X at the CERN Large Hadron
Collider. The total production rates integrated over the rapidity (y) and
transverse-momentum (p_T) ranges |y|<2.4 and p_T<50 GGeV are predicted to be
sigma[pp->2J/psi+X] = 22 (35) nb, sigma[pp->2Upsilon+X] = 24 (49) pb, and
sigma[pp->J/psi+Upsilon+X] = 7 (13) pb at the center-of-momentum energy sqrt{s}
= 7 (14) TeV. In order to provide predictions that can be useful in both small-
and large-p_T regions, we do not employ the fragmentation approximation and we
include the spin-triplet S-wave color-singlet and color-octet channels for each
quarkonium final state at leading order in the strong coupling. The p_T
distributions of pp->2J/psi+X and 2Upsilon+X in the low-p_T region are
dominated by the color-singlet contributions. At leading order in the strong
coupling, the color-singlet channel is absent for pp->J/psi+Upsilon+X.
Therefore, the process pp->J/psi+Upsilon+X may provide a useful probe to the
color-octet mechanism of NRQCD.Comment: 26 pages, 7 figures, 3 tables, version published in JHE
P-wave Quarkonium Decays to Meson Pairs
The processes of P-wave Quarkonium exclusive decays to two mesons are
investigated, in which the final state vector mesons with various polarizations
are considered separately. In the calculation, the initial heavy quarkonia are
treated in the framework of non-relativistic quantum chromodynamics, whereas
for light mesons, the light cone distribution amplitudes up to twist-3 are
employed. It turns out that the higher twist contribution is significant and
provides a possible explanation for the observation of the hadron helicity
selection rule violated processes
by the BESIII collaboration in recently. We also evaluate the process and find that its branching ratio is big enough to be
measured at the B-factories.Comment: more results and discussions adde
Spatially homogeneous Lifshitz black holes in five dimensional higher derivative gravity
We consider spatially homogeneous Lifshitz black hole solutions in five
dimensional higher derivative gravity theories, which can be possible near
horizon geometries of some systems that are interesting in the framework of
gauge/gravity duality. We show the solutions belonging to the nine Bianchi
classes in the pure R^2 gravity. We find that these black holes have zero
entropy at non-zero temperatures and this property is the same as the case of
BTZ black holes in new massive gravity at the critical point. In the most
general quadratic curvature gravity theories, we find new solutions in Bianchi
Type I and Type IX cases.Comment: 15 pages, no figure; v2, refs added, version to appear in JHE
Flux of Atmospheric Neutrinos
Atmospheric neutrinos produced by cosmic-ray interactions in the atmosphere
are of interest for several reasons. As a beam for studies of neutrino
oscillations they cover a range of parameter space hitherto unexplored by
accelerator neutrino beams. The atmospheric neutrinos also constitute an
important background and calibration beam for neutrino astronomy and for the
search for proton decay and other rare processes. Here we review the literature
on calculations of atmospheric neutrinos over the full range of energy, but
with particular attention to the aspects important for neutrino oscillations.
Our goal is to assess how well the properties of atmospheric neutrinos are
known at present.Comment: 68 pages, 26 figures. With permission from the Annual Review of
Nuclear & Particle Science. Final version of this material is scheduled to
appear in the Annual Review of Nuclear & Particle Science Vol. 52, to be
published in December 2002 by Annual Reviews (http://annualreviews.org
Holographic Superconductors from Einstein-Maxwell-Dilaton Gravity
We construct holographic superconductors from Einstein-Maxwell-dilaton
gravity in 3+1 dimensions with two adjustable couplings and the charge
carried by the scalar field. For the values of and we
consider, there is always a critical temperature at which a second order phase
transition occurs between a hairy black hole and the AdS RN black hole in the
canonical ensemble, which can be identified with the superconducting phase
transition of the dual field theory. We calculate the electric conductivity of
the dual superconductor and find that for the values of and where
is small the dual superconductor has similar properties to the
minimal model, while for the values of and where is
large enough, the electric conductivity of the dual superconductor exhibits
novel properties at low frequencies where it shows a "Drude Peak" in the real
part of the conductivity.Comment: 25 pages, 13 figures; v2, typos corrected; v3, refs added, to appear
in JHE
Holographic Entanglement Entropy in P-wave Superconductor Phase Transition
We investigate the behavior of entanglement entropy across the holographic
p-wave superconductor phase transition in an Einstein-Yang-Mills theory with a
negative cosmological constant. The holographic entanglement entropy is
calculated for a strip geometry at AdS boundary. It is found that the
entanglement entropy undergoes a dramatic change as we tune the ratio of the
gravitational constant to the Yang-Mills coupling, and that the entanglement
entropy does behave as the thermal entropy of the background black holes. That
is, the entanglement entropy will show the feature of the second order or first
order phase transition when the ratio is changed. It indicates that the
entanglement entropy is a good probe to investigate the properties of the
holographic phase transition.Comment: 19 pages,15 figures, extended discussion in Sec.5, references adde
The non-Abelian gauge theory of matrix big bangs
We study at the classical and quantum mechanical level the time-dependent
Yang-Mills theory that one obtains via the generalisation of discrete
light-cone quantisation to singular homogeneous plane waves. The non-Abelian
nature of this theory is known to be important for physics near the
singularity, at least as far as the number of degrees of freedom is concerned.
We will show that the quartic interaction is always subleading as one
approaches the singularity and that close enough to t=0 the evolution is driven
by the diverging tachyonic mass term. The evolution towards asymptotically flat
space-time also reveals some surprising features.Comment: 29 pages, 8 eps figures, v2: minor changes, references added: v3
small typographical changes
Lattice potentials and fermions in holographic non Fermi-liquids: hybridizing local quantum criticality
We study lattice effects in strongly coupled systems of fermions at a finite
density described by a holographic dual consisting of fermions in
Anti-de-Sitter space in the presence of a Reissner-Nordstrom black hole. The
lattice effect is encoded by a periodic modulation of the chemical potential
with a wavelength of order of the intrinsic length scales of the system. This
corresponds with a highly complicated "band structure" problem in AdS, which we
only manage to solve in the weak potential limit. The "domain wall" fermions in
AdS encoding for the Fermi surfaces in the boundary field theory diffract as
usually against the periodic lattice, giving rise to band gaps. However, the
deep infrared of the field theory as encoded by the near horizon AdS2 geometry
in the bulk reacts in a surprising way to the weak potential. The hybridization
of the fermions bulk dualizes into a linear combination of CFT1 "local quantum
critical" propagators in the bulk, characterized by momentum dependent
exponents displaced by lattice Umklapp vectors. This has the consequence that
the metals showing quasi-Fermi surfaces cannot be localized in band insulators.
In the AdS2 metal regime, where the conformal dimension of the fermionic
operator is large and no Fermi surfaces are present at low T/\mu, the lattice
gives rise to a characteristic dependence of the energy scaling as a function
of momentum. We predict crossovers from a high energy standard momentum AdS2
scaling to a low energy regime where exponents found associated with momenta
"backscattered" to a lower Brillioun zone in the extended zone scheme. We
comment on how these findings can be used as a unique fingerprint for the
detection of AdS2 like "pseudogap metals" in the laboratory.Comment: 42 pages, 5 figures; v2, minor correction, to appear in JHE
Towards the Lattice Effects on the Holographic Superconductor
We study the lattice effects on the simple holographic toy model; massive
U(1) gauge theory for the bulk action. The mass term is for the U(1) gauge
symmetry breaking in the bulk. Without the lattice, the AC conductivity of this
model shows similar results to the holographic superconductor with the energy
gap. On this model, we introduce the lattice effects, which induce the periodic
potential and break the translational invariance of the boundary field theory.
Without the lattice, due to the translational invariance and the mass term,
there is a delta function peak at zero frequency on the AC conductivity. We
study how this delta function peak is influenced by the lattice effects, which
we introduce perturbatively. In the probe limit, we evaluate the perturbative
corrections to the conductivities at very small frequency limit. We find that
the delta function peak remains, even after the lattice effects are introduced,
although its weight reduces perturbatively. We also study the lattice
wavenumber dependence of this weight. Our result suggests that in the U(1)
symmetry breaking phase, the delta function peak is stable against the lattice
effects at least perturbatively.Comment: 24 pages, 24 figures. v2: minor correction
- …