2,254 research outputs found

    UWB Radar SLAM: an Anchorless Approach in Vision Denied Indoor Environments

    Full text link
    LiDAR and cameras are frequently used as sensors for simultaneous localization and mapping (SLAM). However, these sensors are prone to failure under low visibility (e.g. smoke) or places with reflective surfaces (e.g. mirrors). On the other hand, electromagnetic waves exhibit better penetration properties when the wavelength increases, thus are not affected by low visibility. Hence, this paper presents ultra-wideband (UWB) radar as an alternative to the existing sensors. UWB is generally known to be used in anchor-tag SLAM systems. One or more anchors are installed in the environment and the tags are attached to the robots. Although this method performs well under low visibility, modifying the existing infrastructure is not always feasible. UWB has also been used in peer-to-peer ranging collaborative SLAM systems. However, this requires more than a single robot and does not include mapping in the mentioned environment like smoke. Therefore, the presented approach in this paper solely depends on the UWB transceivers mounted on-board. In addition, an extended Kalman filter (EKF) SLAM is used to solve the SLAM problem at the back-end. Experiments were conducted and demonstrated that the proposed UWB-based radar SLAM is able to map natural point landmarks inside an indoor environment while improving robot localization

    Continuous Non-Malleable Key Derivation and Its Application to Related-Key Security

    Get PDF
    Related-Key Attacks (RKAs) allow an adversary to observe the outcomes of a cryptographic primitive under not only its original secret key e.g., ss, but also a sequence of modified keys ϕ(s)\phi(s), where ϕ\phi is specified by the adversary from a class Φ\Phi of so-called Related-Key Derivation (RKD) functions. This paper extends the notion of non-malleable Key Derivation Functions (nm-KDFs), introduced by Faust et al. (EUROCRYPT\u2714), to \emph{continuous} nm-KDFs. Continuous nm-KDFs have the ability to protect against any a-priori \emph{unbounded} number of RKA queries, instead of just a single time tampering attack as in the definition of nm-KDFs. Informally, our continuous non-malleability captures the scenario where the adversary can tamper with the original secret key repeatedly and adaptively. We present a novel construction of continuous nm-KDF for any polynomials of bounded degree over a finite field. Essentially, our result can be extended to richer RKD function classes possessing properties of \emph{high output entropy and input-output collision resistance}. The technical tool employed in the construction is the one-time lossy filter (Qin et al. ASIACRYPT\u2713) which can be efficiently obtained under standard assumptions, e.g., DDH and DCR. We propose a framework for constructing Φ\Phi-RKA-secure IBE, PKE and signature schemes, using a continuous nm-KDF for the same Φ\Phi-class of RKD functions. Applying our construction of continuous nm-KDF to this framework, we obtain the first RKA-secure IBE, PKE and signature schemes for a class of polynomial RKD functions of bounded degree under \emph{standard} assumptions. While previous constructions for the same class of RKD functions all rely on non-standard assumptions, e.g., dd-extended DBDH assumption

    Electrical Control of Plasmon Resonance with Graphene

    Full text link
    Surface plasmon, with its unique capability to concentrate light into sub-wavelength volume, has enabled great advances in photon science, ranging from nano-antenna and single-molecule Raman scattering to plasmonic waveguide and metamaterials. In many applications it is desirable to control the surface plasmon resonance in situ with electric field. Graphene, with its unique tunable optical properties, provides an ideal material to integrate with nanometallic structures for realizing such control. Here we demonstrate effective modulation of the plasmon resonance in a model system composed of hybrid graphene-gold nanorod structure. Upon electrical gating the strong optical transitions in graphene can be switched on and off, which leads to significant modulation of both the resonance frequency and quality factor of plasmon resonance in gold nanorods. Hybrid graphene-nanometallic structures, as exemplified by this combination of graphene and gold nanorod, provide a general and powerful way for electrical control of plasmon resonances. It holds promise for novel active optical devices and plasmonic circuits at the deep subwavelength scale

    Update on the Risk of Hepatocellular Carcinoma in Chronic Hepatitis B Virus Infection

    Get PDF
    Chronic hepatitis B virus infection is an important cause of liver-related morbidity and mortality, with hepatocellular carcinoma being the most life-threatening complication. Because of the highly variable clinical course of the disease, enormous research efforts have been made with the aim of revealing the factors in the natural history that are relevant to hepatocarcinogenesis. These include epidemiological studies of predisposing risk groups, viral studies of mutations within the hepatitis B viral genome, and clinical correlation of these risk factors in predicting the likelihood of development of hepatocellular cancer in susceptible hosts. This update addresses these risks, with emphasis on the latest research relevant to hepatocarcinogenesis

    Discovery of a Novel Prolactin in Non-Mammalian Vertebrates: Evolutionary Perspectives and Its Involvement in Teleost Retina Development

    Get PDF
    BACKGROUND:The three pituitary hormones, viz. prolactin (PRL), growth hormone (GH) and somatolactin (SL), together with the mammalian placental lactogen (PL), constitute a gene family of hormones with similar gene structure and encoded protein sequences. These hormones are believed to have evolved from a common ancestral gene through several rounds of gene duplication and subsequent divergence. PRINCIPAL FINDINGS:In this study, we have identified a new PRL-like gene in non-mammalian vertebrates through bioinformatics and molecular cloning means. Phylogenetic analyses showed that this novel protein is homologous to the previously identified PRL. A receptor transactivation assay further showed that this novel protein could bind to PRL receptor to trigger the downstream post-receptor event, indicating that it is biologically active. In view of its close phylogenetic relationship with PRL and also its ability to activate PRL receptor, we name it as PRL2 and the previously identified PRL as PRL1. All the newly discovered PRL2 sequences possess three conserved disulfide linkages with the exception of the shark PRL2 which has only two. In sharp contrast to the classical PRL1 which is predominantly expressed in the pituitary, PRL2 was found to be mainly expressed in the eye and brain of the zebrafish but not in the pituitary. A largely reduced inner nuclear layer of the retina was observed after morpholino knockdown of zebrafish PRL2, indicating its role on retina development in teleost. SIGNIFICANCE:The discovery of this novel PRL has revitalized our understanding on the evolution of the GH/PRL/SL/PL gene family. Its unique expression and functions in the zebrafish eye also provide a new avenue of research on the neuroendocrine control of retina development in vertebrates

    Nonlocal observables and lightcone-averaging in relativistic thermodynamics

    Full text link
    The unification of relativity and thermodynamics has been a subject of considerable debate over the last 100 years. The reasons for this are twofold: (i) Thermodynamic variables are nonlocal quantities and, thus, single out a preferred class of hyperplanes in spacetime. (ii) There exist different, seemingly equally plausible ways of defining heat and work in relativistic systems. These ambiguities led, for example, to various proposals for the Lorentz transformation law of temperature. Traditional 'isochronous' formulations of relativistic thermodynamics are neither theoretically satisfactory nor experimentally feasible. Here, we demonstrate how these deficiencies can be resolved by defining thermodynamic quantities with respect to the backward-lightcone of an observation event. This approach yields novel, testable predictions and allows for a straightforward-extension of thermodynamics to General Relativity. Our theoretical considerations are illustrated through three-dimensional relativistic many-body simulations.Comment: typos in Eqs. (12) and (14) corrected, minor additions in the tex
    corecore