153 research outputs found

    Self-supervised Contrastive Learning for Implicit Collaborative Filtering

    Full text link
    Contrastive learning-based recommendation algorithms have significantly advanced the field of self-supervised recommendation, particularly with BPR as a representative ranking prediction task that dominates implicit collaborative filtering. However, the presence of false-positive and false-negative examples in recommendation systems hampers accurate preference learning. In this study, we propose a simple self-supervised contrastive learning framework that leverages positive feature augmentation and negative label augmentation to improve the self-supervisory signal. Theoretical analysis demonstrates that our learning method is equivalent to maximizing the likelihood estimation with latent variables representing user interest centers. Additionally, we establish an efficient negative label augmentation technique that samples unlabeled examples with a probability linearly dependent on their relative ranking positions, enabling efficient augmentation in constant time complexity. Through validation on multiple datasets, we illustrate the significant improvements our method achieves over the widely used BPR optimization objective while maintaining comparable runtime.Comment: 3 figure

    Particle Filter SLAM for Vehicle Localization

    Full text link
    Simultaneous Localization and Mapping (SLAM) presents a formidable challenge in robotics, involving the dynamic construction of a map while concurrently determining the precise location of the robotic agent within an unfamiliar environment. This intricate task is further compounded by the inherent "chicken-and-egg" dilemma, where accurate mapping relies on a dependable estimation of the robot's location, and vice versa. Moreover, the computational intensity of SLAM adds an additional layer of complexity, making it a crucial yet demanding topic in the field. In our research, we address the challenges of SLAM by adopting the Particle Filter SLAM method. Our approach leverages encoded data and fiber optic gyro (FOG) information to enable precise estimation of vehicle motion, while lidar technology contributes to environmental perception by providing detailed insights into surrounding obstacles. The integration of these data streams culminates in the establishment of a Particle Filter SLAM framework, representing a key endeavor in this paper to effectively navigate and overcome the complexities associated with simultaneous localization and mapping in robotic systems.Comment: 6 pages, Journal of Industrial Engineering and Applied Scienc

    News Recommendation with Attention Mechanism

    Full text link
    This paper explores the area of news recommendation, a key component of online information sharing. Initially, we provide a clear introduction to news recommendation, defining the core problem and summarizing current methods and notable recent algorithms. We then present our work on implementing the NRAM (News Recommendation with Attention Mechanism), an attention-based approach for news recommendation, and assess its effectiveness. Our evaluation shows that NRAM has the potential to significantly improve how news content is personalized for users on digital news platforms.Comment: 7 pages, Journal of Industrial Engineering and Applied Scienc

    Faster R-CNN for Robust Pedestrian Detection Using Semantic Segmentation Network

    Get PDF
    Convolutional neural networks (CNN) have enabled significant improvements in pedestrian detection owing to the strong representation ability of the CNN features. However, it is generally difficult to reduce false positives on hard negative samples such as tree leaves, traffic lights, poles, etc. Some of these hard negatives can be removed by making use of high level semantic vision cues. In this paper, we propose a region-based CNN method which makes use of semantic cues for better pedestrian detection. Our method extends the Faster R-CNN detection framework by adding a branch of network for semantic image segmentation. The semantic network aims to compute complementary higher level semantic features to be integrated with the convolutional features. We make use of multi-resolution feature maps extracted from different network layers in order to ensure good detection accuracy for pedestrians at different scales. Boosted forest is used for training the integrated features in a cascaded manner for hard negatives mining. Experiments on the Caltech pedestrian dataset show improvements on detection accuracy with the semantic network. With the deep VGG16 model, our pedestrian detection method achieves robust detection performance on the Caltech dataset
    • …
    corecore