226 research outputs found

    Special Libraries, January 1926

    Get PDF
    Volume 17, Issue 1https://scholarworks.sjsu.edu/sla_sl_1926/1000/thumbnail.jp

    Evaluating factors that influenced the successful implementation of an evidence-based neonatal care intervention in Chinese hospitals using the PARIHS framework

    Get PDF
    Background: Evidence based interventions (EBIs) can improve patient care and outcomes. Understanding the process for successfully introducing and implementing EBIs can inform effective roll-out and scale up. The Promoting Action on Research Implementation in Health Services (PARIHS) framework can be used to evaluate and guide the introduction and implementation of EBIs. In this study, we used kangaroo mother care (KMC) as an example of an evidence-based neonatal intervention recently introduced in selected Chinese hospitals, to identify the factors that influenced its successful implementation. We also explored the utility of the PARIHS framework in China and investigated how important each of its constructs (evidence, context and facilitation) and sub-elements were perceived to be to successful implementation of EBIs in a Chinese setting. Method: We conducted clinical observations and semi-structured interviews with 10 physicians and 18 nurses in five tertiary hospitals implementing KMC. Interview questions were organized around issues including knowledge and beliefs, resources, culture, implementation readiness and climate. We used directed content analysis to analyze the interview transcript, amending the PARIHS framework to incorporate emerging sub-themes. We also rated the constructs and sub-elements on a continuum from “low (weak)”, “moderate” or “high (strong)” highlighting the ones considered most influential for hospital level implementation by study participants. Results: Using KMC as an example, our finding suggest that clinical experience, culture, leadership, evaluation, and facilitation are highly influential elements for EBI implementation in China. External evidence had a moderate impact, especially in the initial awareness raising stages of implementation and resources were also considered to be of moderate importance, although this may change as implementation progresses. Patient experience was not seen as a driver for implementation at hospital level. Conclusion: Based on our findings examining KMC implementation as a case example, the PARIHS framework can be a useful tool for planning and evaluating EBI implementation in China. However, it’s sub-elements should be assessed and adapted to the implementation setting

    A β-cyclodextrin modified graphitic carbon nitride with Au co-catalyst for efficient photocatalytic hydrogen peroxide production

    Get PDF
    Photocatalytic hydrogen peroxide (H2O2) production has attracted considerable attention as a renewable and environment-friendly method to replace other traditional production techniques. The performance of H2O2 production remains limited by the inertness of graphitic carbon nitride (CN) towards the adsorption and activation of O2. In this work, a photocatalyst comprising of β-cyclodextrin (β-CD)-modified CN with supporting Au co-catalyst (Au/β-CD-CN) has been utilized for effective H2O2 production under visible light irradiation. The static contact angle measurement suggested that β-CD modification increased the hydrophobicity of the CN photocatalyst as well as its affinity to oxygen gas, leading to an increase in H2O2 production. The rate of H2O2 production reached more than 0.1 mM/h under visible-light irradiation. The electron spin resonance spectra indicated that H2O2 was directly formed via a 2-electron oxygen reduction reaction (ORR) over the Au/β-CD-CN photocatalyst

    Shrub type dominates the vertical distribution of leaf C : N : P stoichiometry across an extensive altitudinal gradient

    Get PDF
    Understanding leaf stoichiometric patterns is crucial for improving predictions of plant responses to environmental changes. Leaf stoichiometry of terrestrial ecosystems has been widely investigated along latitudinal and longitudinal gradients. However, very little is known about the vertical distribution of leaf C :N: P and the relative effects of environmental parameters, especially for shrubs. Here, we analyzed the shrub leaf C, N and P patterns in 125 mountainous sites over an extensive altitudinal gradient (523-4685 m) on the Tibetan Plateau. Results showed that the shrub leaf C and C :N were 7.3-47.5% higher than those of other regional and global flora, whereas the leaf N and N: P were 10.2-75.8% lower. Leaf C increased with rising altitude and decreasing temperature, supporting the physiological acclimation mechanism that high leaf C (e.g., alpine or evergreen shrub) could balance the cell osmotic pressure and resist freezing. The largest leaf N and high leaf P occurred in valley region (altitude 1500 m), likely due to the large nutrient leaching from higher elevations, faster litter decomposition and nutrient resorption ability of deciduous broadleaf shrub. Leaf N: P ratio further indicated increasing N limitation at higher altitudes. Interestingly, drought severity was the only climatic factor positively correlated with leaf N and P, which was more appropriate for evaluating the impact of water status than precipitation. Among the shrub ecosystem and functional types (alpine, subalpine, montane, valley, evergreen, deciduous, broadleaf, and conifer), their leaf element contents and responses to environments were remarkably different. Shrub type was the largest contributor to the total variations in leaf stoichiometry, while climate indirectly affected the leaf C :N: P via its interactive effects on shrub type or soil. Collectively, the large heterogeneity in shrub type was the most important factor explaining the overall leaf C :N: P variations, despite the broad climate gradient on the plateau. Temperature and drought induced shifts in shrub type distribution will influence the nutrient accumulation in mountainous shrubs. © Author(s) 2018

    PI3K/AKT/mTOR pathway-derived risk score exhibits correlation with immune infiltration in uveal melanoma patients

    Get PDF
    Uveal melanoma (UVM) is a rare but highly aggressive intraocular tumor with a poor prognosis and limited therapeutic options. Recent studies have implicated the PI3K/AKT/mTOR pathway in the pathogenesis and progression of UVM. Here, we aimed to explore the potential mechanism of PI3K/AKT/mTOR pathway-related genes (PRGs) in UVM and develop a novel prognostic-related risk model. Using unsupervised clustering on 14 PRGs profiles, we identified three distinct subtypes with varying immune characteristics. Subtype A demonstrated the worst overall survival and showed higher expression of human leukocyte antigen, immune checkpoints, and immune cell infiltration. Further enrichment analysis revealed that subtype A mainly functioned in inflammatory response, apoptosis, angiogenesis, and the PI3K/AKT/mTOR signaling pathway. Differential analysis between different subtypes identified 56 differentially expressed genes (DEGs), with the major enrichment pathway of these DEGs associated with PI3K/AKT/mTOR. Based on these DEGs, we developed a consensus machine learning-derived signature (RSF model) that exhibited the best power for predicting prognosis among 76 algorithm combinations. The novel signature demonstrated excellent robustness and predictive ability for the overall survival of patients. Moreover, we observed that patients classified by risk scores had distinguishable immune status and mutation. In conclusion, our study identified a consensus machine learning-derived signature as a potential biomarker for prognostic prediction in UVM patients. Our findings suggest that this signature is correlated with tumor immune infiltration and may serve as a valuable tool for personalized therapy in the clinical setting

    Concerns regarding complementary feeding practices among urban Chinese mothers: a focus group study in Xi\u2019an

    Get PDF
    Background: Complementary feeding (CF) is an important determinant of infant growth and development. However, CF practices are influenced by caregivers\u2019 perceptions and knowledge. This study aimed to describe perceptions and factors that potentially influence CF practices among Chinese mothers living in Xi\u2019an, a rapidly developing city in China. Methods: This focus group study included three discussion groups. Topics related to practices and concerns regarding CF were discussed among women with at least one child aged 4\u201336 months. A brief questionnaire was used to collect demographic information for mothers and their children. Results: Among study participants, the timing of starting CF for their children varied from age 4 to 8 months. Grain was ranked as the top food for CF, and homemade food was preferred to commercial CF products. Food additives and preservatives were the priority concerns when purchasing commercial baby food, particularly regarding uncertainty about their safety. In terms of nutrition, deficiencies in minerals and vitamins were of major concern. The issue of bio-availability of added nutrients in baby food was also raised during the discussions. Participants showed a strong reliance on information obtained from the Internet via computers or smartphones as their main source of CF knowledge, but felt this information lacked expertise. Conclusions: Participating mothers from Xi\u2019an prefer homemade food for CF to commercial products. More scientific knowledge of CF and related food safety issues should be available, perhaps via Internet-based approaches

    Microbial signatures of neonatal bacterial meningitis from multiple body sites

    Get PDF
    As a common central nervous system infection in newborns, neonatal bacterial meningitis (NBM) can seriously affect their health and growth. However, although metagenomic approaches are being applied in clinical diagnostic practice, there are some limitations for whole metagenome sequencing and amplicon sequencing in handling low microbial biomass samples. Through a newly developed ultra-sensitive metagenomic sequencing method named 2bRAD-M, we investigated the microbial signatures of central nervous system infections in neonates admitted to the neonatal intensive care unit. Particularly, we recruited a total of 23 neonates suspected of having NBM and collected their blood, cerebrospinal fluid, and skin samples for 2bRAD-M sequencing. Then we developed a novel decontamination method (Reads Level Decontamination, RLD) for 2bRAD-M by which we efficiently denoised the sequencing data and found some potential biomarkers that have significantly different relative abundance between 12 patients that were diagnosed as NBM and 11 Non-NBM based on their cerebrospinal fluid (CSF) examination results. Specifically, we discovered 11 and 8 potential biomarkers for NBM in blood and CSF separately and further identified 16 and 35 microbial species that highly correlated with the physiological indicators in blood and CSF. Our study not only provide microbiological evidence to aid in the diagnosis of NBM but also demonstrated the application of an ultra-sensitive metagenomic sequencing method in pathogenesis study

    QTL Detection for Kernel Size and Weight in Bread Wheat (Triticum aestivum L.) Using a High-Density SNP and SSR-Based Linkage Map

    Get PDF
    High-density genetic linkage maps are essential for precise mapping quantitative trait loci (QTL) in wheat (Triticum aestivum L.). In this study, a high-density genetic linkage map consisted of 6312 SNP and SSR markers was developed to identify QTL controlling kernel size and weight, based on a recombinant inbred line (RIL) population derived from the cross of Shixin828 and Kenong2007. Seventy-eight putative QTL for kernel length (KL), kernel width (KW), kernel diameter ratio (KDR), and thousand kernel weight (TKW) were detected over eight environments by inclusive composite interval mapping (ICIM). Of these, six stable QTL were identified in more than four environments, including two for KL (qKL-2D and qKL-6B.2), one for KW (qKW-2D.1), one for KDR (qKDR-2D.1) and two for TKW (qTKW-5A and qTKW-5B.2). Unconditional and multivariable conditional QTL mapping for TKW with respect to TKW component (TKWC) revealed that kernel dimensions played an important role in regulating the kernel weight. Seven QTL-rich genetic regions including seventeen QTL were found on chromosomes 1A (2), 2D, 3A, 4B and 5B (2) exhibiting pleiotropic effects. In particular, clusters on chromosomes 2D and 5B possessing significant QTL for kernel-related traits were highlighted. Markers tightly linked to these QTL or clusters will eventually facilitate further studies for fine mapping, candidate gene discovery and marker-assisted selection (MAS) in wheat breeding

    Insights into Adaptations to a Near- Obligate Nematode Endoparasitic Lifestyle from the Finished Genome of Drechmeria coniospora

    Get PDF
    Nematophagous fungi employ three distinct predatory strategies: nematode trapping, parasitism of females and eggs, and endoparasitism. While endoparasites play key roles in controlling nematode populations in nature, their application for integrated pest management is hindered by the limited understanding of their biology. We present a comparative analysis of a high quality finished genome assembly of Drechmeria coniospora, a model endoparasitic nematophagous fungus, integrated with a transcriptomic study. Adaptation of D. coniospora to its almost completely obligate endoparasitic lifestyle led to the simplification of many orthologous gene families involved in the saprophytic trophic mode, while maintaining orthologs of most known fungal pathogen-host interaction proteins, stress response circuits and putative effectors of the small secreted protein type. The need to adhere to and penetrate the host cuticle led to a selective radiation of surface proteins and hydrolytic enzymes. Although the endoparasite has a simplified secondary metabolome, it produces a novel peptaibiotic family that shows antibacterial, antifungal and nematicidal activities. Our analyses emphasize the basic malleability of the D. coniospora genome: loss of genes advantageous for the saprophytic lifestyle; modulation of elements that its cohort species utilize for entomopathogenesis; and expansion of protein families necessary for the nematode endoparasitic lifestyle
    • …
    corecore