429 research outputs found
Characterization of a selenium-resistance-enhancing homocysteine S-methyltransferase from Aegilops tauschii
In this study, the cDNA of homocysteine S-methyltransferase was isolated from Aegilops tauschii Coss., with the gene accordingly designated as AetHMT1. Similar to other methyltransferases, AetHMT1 contains a GGCCR consensus sequence for a possible zinc-binding motif near the C-terminal and a conserved cysteine residue upstream of the zinc-binding motif. Analysis of AetHMT1 uncovered no obvious chloroplast or mitochondrial targeting sequences. We functionally expressed AetHMT1 in Escherichia coli and confirmed its biological activity, as evidenced by a positive HMT enzyme activity of 164.516 ± 17.378 nmol min−1 mg−1 protein when catalyzing the transformation of L-homocysteine. Compared with the bacterium containing the empty vector, E. coli harboring the recombinant AetHMT1 plasmid showed much higher tolerance to selenate and selenite. AetHMT1 transcript amounts in different organs were increased by Na2SeO4 treatment, with roots accumulating higher amounts than stems, old leaves and new leaves. We have therefore successfully isolated HMT1 from Ae. tauschii and characterized the biochemical and physiological functions of the corresponding protein
Development and Application of the Diffusive Gradients in Thin-Films Technique for Measuring Psychiatric Pharmaceuticals in Natural Waters
Psychiatric pharmaceuticals are widely distributed in the aquatic environment and have attracted recent attention due to their potential for environmental effects. A robust and reliable in situ passive sampling approach, the diffusive gradients in thin-films (DGT) technique, is developed here to measure 14 psychiatric pharmaceuticals. A new binding material, mixed-mode cation exchange resin (Poly-Sery MCX, 40 μm, CNW, Germany), was used for the first time in DGT and compared to XAD and HLB. Reliable elution efficiencies of the pharmaceuticals from the binding gels were obtained in methanol/ammonia, and diffusion coefficients for all the compounds were determined. The influence of diffusive layer thickness (0.515–2.015 mm), deployment time (3–168 h), and important environmental conditions—pH (3.02–9.45), ionic strength (0.0001–0.5 M), and dissolved organic matter (0–20 mg L–1)—were evaluated. The capacity of XAD, HLB, and MCX gels for binding all the test pharmaceuticals was ∼335 μg per disc, meaning that DGT could theoretically be deployed for over 30 months if there are no competitive effects or confounding factors. The uptake kinetics of psychiatric pharmaceuticals onto MCX gel were much faster than those onto XAD and HLB gels in the first hour. DGT measured concentrations of test pharmaceuticals at two sample points in a river (over 6 days) were comparable to those obtained by grab sampling. This study demonstrates the accuracy and reliability of DGT for measuring psychiatric pharmaceuticals across a wide range of freshwater conditions found in the natural environment
Molecular characterization of seven novel Glu-A1<sup>m</sup>x alleles from Triticum monococcum ssp. monococcum
Seven Glu-A1m allelic variants of the Glu-A1mx genes in Triticum monococcum ssp. monococcum, designated as 1Ax2.1a, 1Ax2.1b, 1Ax2.1c, 1Ax2.1d, 1Ax2.1e, 1Ax2.1f, and 1Ax2.1g were characterized. Their authenticity was confirmed by successful expression of the coding regions in E. coli, and except for the 1Ax2.1a with the presence of internal stop codons at position of 313 aa, all correspond to the subunit in seeds. However, all the active six genes had a same DNA size although their encoding subunits showed different molecular weight. Our study indicated that amino acid residue substitutions rather than previously frequently reported insertions/deletions played an important role on the subunit evolution of these Glu-A1mx alleles. Since variation in the Glu-A1x locus in common wheat is rare, these novel genes at the Glu-A1mx can be used as candidate genes for further wheat quality improvement
In silico cloning and chromosomal localization of EST sequences that are related to leaf senescence using nulli-tetrasomes in wheat
Leaf senescence is a notably important trait that limits the yield and biomass accumulation of agronomic crops. Therefore, determining the chromosomal position of the expression sequence tags (ESTs) that are associated with leaf senescence is notably interesting in the manipulation of leaf senescence for crop improvement. A total of 32 ESTs that were previously identified during the delaying leaf senescence stage in the stay-green wheat cultivar CN17 were mapped to 42 chromosomes, a chloroplast, a mitochondrion, and a ribosome using in silico mapping. Then, we developed 19 pairs of primers based on these sequences and used them to determine the polymorphisms between the stay-green cultivars (CN12, CN17, and CN18) and the control cultivar MY11. Among the 19 pairs of primers, 5 pairs produced polymorphisms between the stay-green cultivar and the non-stay-green control. Further studies of Chinese Spring nullisomic-tetrasomics show that JK738991 is mapped to 3B, JK738983 is mapped to 5D, and JK738989 is mapped to 2A, 4A, and 3D. The other two ESTs, JK738994 and JK739003, were not assigned to a chromosome using the Chinese Spring nullisomic-tetrasomics, which indicates that these ESTs may be derived from rye DNA in the wide cross. In particular, the ESTs that produce polymorphisms are notably useful in identifying the stay-green cultivar using molecular marker-assisted selection. The results also suggest that the in silico mapping data, even from a comparison genomic analysis based on the homogeneous comparison, are useful at some points, but the data were not always reliable, which requires further investigation using experimental methods
Existence and stability of viscoelastic shock profiles
We investigate existence and stability of viscoelastic shock profiles for a
class of planar models including the incompressible shear case studied by
Antman and Malek-Madani. We establish that the resulting equations fall into
the class of symmetrizable hyperbolic--parabolic systems, hence spectral
stability implies linearized and nonlinear stability with sharp rates of decay.
The new contributions are treatment of the compressible case, formulation of a
rigorous nonlinear stability theory, including verification of stability of
small-amplitude Lax shocks, and the systematic incorporation in our
investigations of numerical Evans function computations determining stability
of large-amplitude and or nonclassical type shock profiles.Comment: 43 pages, 12 figure
Characterization of an expressed Triticum monococcum Glu-A1y gene containing a premature termination codon in its C-terminal coding region
Premature termination codons (PTCs) are an important reason for the silence of highmolecular- weight glutenin subunits in Triticum species. Although the Glu-A1y gene is generally silent in common wheat, we here isolated an expressed Glu-A1y gene containing a PTC, named 1Ay8.3, from Triticum monococcum ssp. monococcum (AmAm, 2n = 2x = 14). Despite the presence of a PTC (TAG) at base pair positions 1879–1881 in the C-terminal coding region, this did not obviously affect 1Ay8.3 expression in seeds. This was demonstrated by the fact that when the PTC TAG of 1Ay8.3 was mutated to the CAG codon, the mutant in Escherichia coli bacterial cells expressed the same subunit as in the seeds. However, in E. coli, 1Ay8.3 containing the PTC expressed a truncated protein with faster electrophoretic mobility than that in seeds, suggesting that PTC translation termination suppression probably occurs in vivo (seeds) but not in vitro (E. coli). This may represent one of only a few reports on the PTC termination suppression phenomenon in genes
Increasing incidence of hemorrhagic fever with renal syndrome could be associated with livestock husbandry in Changchun, Northeastern China
Background: Since the end of the 1990s, the incidence of hemorrhagic fever with renal syndrome (HFRS) has been increasing dramatically in Changchun, northeastern China. However, it is unknown which, and how, underlying risk factors have been involved in the reemergence of the disease.Methods: Data on HFRS cases at the county scale were collected from 1998 to 2012. Data on livestock husbandry including the numbers of large animals (cattle, horses, donkeys and mules), sheep, and deer, and on climatic and land cover variables were also collected. Epidemiological features, including the spatial, temporal and human patterns of disease were characterized. The potential factors related to spatial heterogeneity and temporal trends were analyzed using standard and time-series Poisson regression analysis, respectively.Results: Annual incidence varied among the 10 counties. Shuangyang County in southeastern Changchun had the highest number of cases (1,525 cases; 35.9% of all cases), but its population only accounted for 5.6% of the total population. Based on seasonal pattern in HFRS incidence, two epidemic phases were identified. One was a single epidemic peak at the end of each year from 1988 to 1997 and the other consisted of dual epidemic peaks at both the end and the beginning of each year from 1998 to the end of the study period. HFRS incidence was higher in males compared to females, and most of the HFRS cases occurred in peasant populations. The results of the Poisson regression analysis indicated that the spatial distribution and the increasing incidence of HFRS were significantly associated with livestock husbandry and climate factors, particularly with deer cultivation.Conclusions: Our results indicate that the re-emergence of HFRS in Changchun has been accompanied by changing seasonal patterns over the past 25 years. Integrated measures focusing on areas related to local livestock husbandry could be helpful for the prevention and control of HFRS
Molecular characterization of different Triticum monococcum ssp. monococcum Glu-A1<sup>m</sup>x alleles
High-molecular-weight glutenin subunits (HMW-GSs) are important seed storage proteins associated with bread-making quality in common wheat (Triticum aestivum L., 2n = 6x = 42, AABBDD). Variation in the Glu-A1x locus in common wheat is scare. Diploid Triticum monococcum ssp. monococcum (2n = 2x = 14, AmAm) is the first cultivated wheat. In the present study, allelic variations at the Glu-A1mx locus were systematically investigated in 197 T. monococcum ssp. monococcum accessions. Out of the 8 detected Glu-A1mx alleles, 5 were novel, including Glu-A1m-b, Glu-A1m-c, Glu-A1m-d, Glu-A1m-g, and Glu-A1m-h. This diversity is higher than that of common wheat. Compared with 1Ax1 and 1Ax2*, which are present in common wheat, these alleles contained three deletions/insertions as well as some single nucleotide polymorphism variations that might affect the elastic properties of wheat flour. New variations in T. monococcum probably occurred after the divergence between A and Am and are excluded in common wheat populations. These allelic variations could be used as novel resources to further improve wheat quality
Tracking echovirus eleven outbreaks in Guangdong, China
In April 2019, a suspect cluster of enterovirus cases was reported in a neonatology department in Guangdong, China, resulting in five deaths. We aimed to investigate the pathogen profiles in fatal cases, the circulation and transmission pattern of
the viruses by combining metatranscriptomic, phylogenetic, and epidemiological analyses. Metatranscriptomic sequencing
was used to characterize the enteroviruses. Clinical and environmental surveillance in the local population was performed
to understand the prevalence and genetic diversity of the viruses in the local population. The possible source(s), evolution,
transmission, and recombination of the viruses were investigated by incorporating genomes from the current outbreak,
from local retrospective surveillance, and from public databases. Metatranscriptomic analysis identified Echovirus 11 (E11)
in three fatal cases. Seroprevalence of neutralization antibody to E11 was 35 to 44 per cent in 3–15 age groups of general population, and the viruses were associated with various clinical symptoms. From the viral phylogeny, nosocomial transmissions were identified and all E11 2019 outbreak strains were closely related with E11 strains circulating in local population 2017–19. Frequent recombination occurred among the 2019 Guangdong E11 outbreak strains and various genotypes in enterovirus B species. This study provides an example of combining advanced genetic technology and epidemiological surveillance in pathogen diagnosis, source(s), and transmission tracing during an infectious disease outbreak. The result highlights the hidden E11 circulation and the risk of viral transmission and infection in the young age population in China.
Frequent recombination between Guangdong-like strains and other enterovirus genotypes also implies the prevalence of
these emerging E11 strains
Epidemiologic Features and Environmental Risk Factors of Severe Fever with Thrombocytopenia Syndrome, Xinyang, China
Background:Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease discovered in rural areas of Central China in 2009, caused by a novel bunyavirus, SFT
- …