182 research outputs found

    The homozygosity verification for doubled haploid Japanese flounder, Paralichthys olivaceus, by microsatellite DNA markers

    Get PDF
    A total of 845 doubled haploids Japanese flounder, Paralichthys olivaceus from three spawns were produced by utilizing hydrostatic pressure treatments on eggs fertilized with ultraviolet (UV)-irradiated sperm of red sea bream (Pagrus major). 481 polymorphic microsatellite markers were used to identify the homozygosity of these doubled haploids, of which, only 31% (265 out of 845) individuals were fully homozygous at all loci tested, while, the rest 580 offspring were homozygous at 183 to 320 loci. Additionally, the embryonic development and external morphology of doubled haploids were also observed and recorded. The whole process of embryonic development was divided into 19 stages based on the morphological characteristics of the developing embryo. Hatching took place 73 to 74 h after fertilization. The means of body weight, body length and body depth in 360 days old fishes were always small in doubled haploids and large in normal diploids, but, the standard deviations and coefficients of variation of doubled haploids were significantly higher than those of normal diploids.Keywords: Doubled haploids, gynogenesis, Japanese flounder, Paralichthys olivaceu

    Enhanced heterologous protein productivity by genome reduction in Lactococcus lactis NZ9000

    Get PDF
    Background: The implementation of novel chassis organisms to be used as microbial cell factories in industrial applications is an intensive research field. Lactococcus lactis, which is one of the most extensively studied model organisms, exhibits superior ability to be used as engineered host for fermentation of desirable products. However, few studies have reported about genome reduction of L. lactis as a clean background for functional genomic studies and a model chassis for desirable product fermentation. Results: Four large nonessential DNA regions accounting for 2.83% in L. lactis NZ9000 (L. lactis 9 k) genome (2,530,294 bp) were deleted using the Cre-loxP deletion system as the first steps toward a minimized genome in this study. The mutants were compared with the parental strain in several physiological traits and evaluated as microbial cell factories for heterologous protein production (intracellular and secretory expression) with the red fluorescent protein (RFP) and the bacteriocin leucocin C (LecC) as reporters. The four mutants grew faster, yielded enhanced biomass, achieved increased adenosine triphosphate content, and diminished maintenance demands compared with the wild strain in the two media tested. In particular, L. lactis 9 k-4 with the largest deletion was identified as the optimum candidate host for recombinant protein production. With nisin induction, not only the transcriptional efficiency but also the production levels of the expressed reporters were approximately three-to fourfold improved compared with the wild strain. The expression of lecC gene controlled with strong constitutive promoters P5 and P8 in L. lactis 9 k-4 was also improved significantly. Conclusions: The genome-streamlined L. lactis 9 k-4 outcompeted the parental strain in several physiological traits assessed. Moreover, L. lactis 9 k-4 exhibited good properties as platform organism for protein production. In future works, the genome of L. lactis will be maximally reduced by using our specific design to provide an even more clean background for functional genomics studies than L. lactis 9 k-4 constructed in this study. Furthermore, an improved background will be potentially available for use in biotechology.Peer reviewe

    Restructured Lactococcus lactis strains with emergent properties constructed by a novel highly efficient screening system

    Get PDF
    Background After 2.83% genome reduction in Lactococcus lactis NZ9000, a good candidate host for proteins production was obtained in our previous work. However, the gene deletion process was time consuming and laborious. Here, we proposed a convenient gene deletion method suitable for large-scale genome reduction in L. lactis NZ9000. Results Plasmid pNZ5417 containing a visually selectable marker P-nisZ-lacZ was constructed, which allowed more efficient and convenient screening of gene deletion mutants. Using this plasmid, two large nonessential DNA regions, L-4A and L-5A, accounting for 1.25% of the chromosome were deleted stepwise in L. lactis 9k-3. When compared with the parent strain, the mutant L. lactis 9k-5A showed better growth characteristics, transformability, carbon metabolic capacity, and amino acids biosynthesis. Conclusions Thus, this study provides a convenient and efficient system for large-scale genome deletion in L. lactis through application of visually selectable marker, which could be helpful for rapid genome streamlining and generation of restructured L. lactis strains that can be used as cell factories.Peer reviewe

    Restructured Lactococcus lactis strains with emergent properties constructed by a novel highly efficient screening system

    Get PDF
    Background After 2.83% genome reduction in Lactococcus lactis NZ9000, a good candidate host for proteins production was obtained in our previous work. However, the gene deletion process was time consuming and laborious. Here, we proposed a convenient gene deletion method suitable for large-scale genome reduction in L. lactis NZ9000. Results Plasmid pNZ5417 containing a visually selectable marker P-nisZ-lacZ was constructed, which allowed more efficient and convenient screening of gene deletion mutants. Using this plasmid, two large nonessential DNA regions, L-4A and L-5A, accounting for 1.25% of the chromosome were deleted stepwise in L. lactis 9k-3. When compared with the parent strain, the mutant L. lactis 9k-5A showed better growth characteristics, transformability, carbon metabolic capacity, and amino acids biosynthesis. Conclusions Thus, this study provides a convenient and efficient system for large-scale genome deletion in L. lactis through application of visually selectable marker, which could be helpful for rapid genome streamlining and generation of restructured L. lactis strains that can be used as cell factories.Peer reviewe
    • …
    corecore