909 research outputs found
Photon assisted tunneling in pairs of silicon donors
Shallow donors in silicon are favorable candidates for the implementation of solid-state quantum computer architectures because of the promising combination of atomiclike coherence properties and scalability from the semiconductor manufacturing industry. Quantum processing schemes require (among other things) controlled information transfer for readout. Here we demonstrate controlled electron tunneling at 10 K from P to Sb impurities and vice versa with the assistance of resonant terahertz photons
Proton acceleration in analytic reconnecting current sheets
Particle acceleration provides an important signature for the magnetic collapse that accompanies a solar flare. Most particle acceleration studies, however, invoke magnetic and electric field models that are analytically convenient rather than solutions of the governing magnetohydrodynamic equations. In this paper a self-consistent magnetic reconnection solution is employed to investigate proton orbits, energy gains, and acceleration timescales for proton acceleration in solar flares. The magnetic field configuration is derived from the analytic reconnection solution of Craig and Henton. For the physically realistic case in which magnetic pressure of the current sheet is limited at small resistivities, the model contains a single free parameter that specifies the shear of the velocity field. It is shown that in the absence of losses, the field produces particle acceleration spectra characteristic of magnetic X-points. Specifically, the energy distribution approximates a power law ~ξ-3/2 nonrelativistically, but steepens slightly at the higher energies. Using realistic values of the “effective” resistivity, we obtain energies and acceleration times that fall within the range of observational data for proton acceleration in the solar corona
Charge and matter distributions and form factors of light, medium and heavy neutron-rich nuclei
Results of charge form factors calculations for several unstable neutron-rich
isotopes of light, medium and heavy nuclei (He, Li, Ni, Kr, Sn) are presented
and compared to those of stable isotopes in the same isotopic chain. For the
lighter isotopes (He and Li) the proton and neutron densities are obtained
within a microscopic large-scale shell-model, while for heavier ones Ni, Kr and
Sn the densities are calculated in deformed self-consistent mean-field Skyrme
HF+BCS method. We also compare proton densities to matter densities together
with their rms radii and diffuseness parameter values. Whenever possible
comparison of form factors, densities and rms radii with available experimental
data is also performed. Calculations of form factors are carried out both in
plane wave Born approximation (PWBA) and in distorted wave Born approximation
(DWBA). These form factors are suggested as predictions for the future
experiments on the electron-radioactive beam colliders where the effect of the
neutron halo or skin on the proton distributions in exotic nuclei is planned to
be studied and thereby the various theoretical models of exotic nuclei will be
tested.Comment: 26 pages, 11 figures, 3 tables, accepted for publication in Phys.
Rev.
Technologies for Working with Talented Youth in the Transbaikal Region
В статье рассмотрен опыт реализации молодежной политики в Забайкальском крае по такому направлению, как поддержка творческий молодежи.This article examines the concepts of youth, talented youth, as a direction of the state youth policy. The experience of the region on this issue is considered
Petroleum-related hydrocarbons in deep and subsurface sediments from South-Western Barents Sea
Subsurface sediments from a pockmark area in South-Western Barents Sea have been earlier found to contain elevated levels of petroleum-related polycyclic aromatic hydrocarbons. This work describes a comprehensive analysis of various biomarkers, including the highly source-specific hopanes, in a 4.5 m long gravity core from the same area, together with subsurface sediment samples from other areas in the region without pockmarks present (“background samples”). A clear difference between the pockmark gravity core and the background sediment cores was found, both with regard to genesis and the level of transformation of organic matter. A number of indicator parameters, such as methylphenanthrene index (MPI-1), point towards a significantly higher maturity of hydrocarbons in the pockmark core throughout its length as compared to the other sampled locations. Higher contents of microbial hopanoids (hopenes) may indicate the former presence of petroleum. These findings confirm the hypothesis of a natural hydrocarbon source in the deeper strata present in the studied location with pockmarks
Facilities for the Energy Frontier of Nuclear Physics
The Relativistic Heavy Ion Collider at BNL has been exploring the energy
frontier of nuclear physics since 2001. Its performance, flexibility and
continued innovative upgrading can sustain its physics output for years to
come. Now, the Large Hadron Collider at CERN is about to extend the frontier
energy of laboratory nuclear collisions by more than an order of magnitude. In
the coming years, its physics reach will evolve towards still higher energy,
luminosity and varying collision species, within performance bounds set by
accelerator technology and by nuclear physics itself. Complementary high-energy
facilities will include fixed-target collisions at the CERN SPS, the FAIR
complex at GSI and possible electron-ion colliders based on CEBAF at JLAB, RHIC
at BNL or the LHC at CERN.Comment: Invited talk at the International Nuclear Physics Conference,
Vancouver, Canada, 4-9 July 2010, to be published in Journal of Physics:
Conference Series. http://inpc2010.triumf.ca
Measurement of a reaction-diffusion crossover in exciton-exciton recombination inside carbon nanotubes using femtosecond optical absorption
Exciton-exciton recombination in isolated semiconducting single-walled carbon nanotubes was studied using femtosecond transient absorption. Under sufficient excitation to saturate the optical absorption, we observed an abrupt transition between reaction- and diffusion-limited kinetics, arising from reactions between incoherent localized excitons with a finite probability of ∼0.2 per encounter. This represents the first experimental observation of a crossover between classical and critical kinetics in a 1D coalescing random walk, which is a paradigm for the study of nonequilibrium systems.
Copyright 2013 The American Physical Society. This is the author's version of a paper accepted for publication in Physical Review Letter
Measurement of a reaction-diffusion crossover in exciton-exciton recombination inside carbon nanotubes using femtosecond optical absorption
Exciton-exciton recombination in isolated semiconducting single-walled carbon
nanotubes was studied using femtosecond transient absorption. Under sufficient
excitation to saturate the optical absorption, we observed an abrupt transition
between reaction- and diffusion- limited kinetics, arising from reactions
between incoherent localized excitons with a finite probability of ~ 0.2 per
encounter. This represents the first experimental observation of a crossover
between classical and critical kinetics in a 1D coalescing random walk, which
is a paradigm for the study of non- equilibrium systems.Comment: Accepted for Physical Review Letters. Title changed, and "exciton
fusion" replaced by "exciton-exciton recombination". Present address of Prof
Tom Brown added. 12 pages plus 3 figure
Recommended from our members
Optical pumping and readout of bismuth hyperfine states in silicon for atomic clock applications
The push for a semiconductor-based quantum information technology has renewed interest in the spin states and optical transitions of shallow donors in silicon, including the donor bound exciton transitions in the near-infrared and the Rydberg, or hydrogenic, transitions in the mid-infrared. The deepest group V donor in silicon, bismuth, has a large zero-field ground state hyperfine splitting, comparable to that of rubidium, upon which the now-ubiquitous rubidium atomic clock time standard is based. Here we show that the ground state hyperfine populations of bismuth can be read out using the mid-infrared Rydberg transitions, analogous to the optical readout of the rubidium ground state populations upon which rubidium clock technology is based. We further use these transitions to demonstrate strong population pumping by resonant excitation of the bound exciton transitions, suggesting several possible approaches to a solid-state atomic clock using bismuth in silicon, or eventually in enriched 28Si
- …