7 research outputs found
Using Reappraisal to Improve Outcomes for STEM Teachers and Students
The many stressors associated with teaching can take a toll, resulting in high levels of burnout among teachers and reduced motivation and academic performance among students. This is especially true in the context of science, technology, engineering, and mathematics (STEM) subjects. Despite the efficacy of emotion regulation interventions in pedagogical settings in general and in STEM teaching in particular, there is a lack of suitable interventions. We applied the process model of emotion regulation to STEM teaching and proposed a framework, STEM-Model of EmotioN regulation: Teachers’ Opportunities and Responsibilities (STEM-MENTOR), to elucidate how the high demands of STEM teaching and contextual factors (e.g., culture, reforms, teacher-student interactions) may lead to intensified negative emotions and deficits in executive functioning and emotion regulation implementation. Teacher emotions, in turn, shape students’ STEM-related achievements and epistemic emotions. Thus, teachers’ emotion regulation skills have pervasive effects on teaching outcomes for both teachers and students. We illustrate how at each level of our framework, steps could be taken to improve teachers’ emotional trajectory. Our proposed STEM-MENTOR framework has implications for theoretical understanding and may help to shape future interventions that focus on cognitive-emotional processes in STEM education
Lital Daches Cohen's Quick Files
The Quick Files feature was discontinued and it’s files were migrated into this Project on March 11, 2022. The file URL’s will still resolve properly, and the Quick Files logs are available in the Project’s Recent Activity
Math Anxiety Is Related to Math Difficulties and Composed of Emotion Regulation and Anxiety Predisposition: A Network Analysis Study
Current evidence suggests emotion regulation is an important factor in both math anxiety and math performance, but the interplay between these constructs is unexamined. Given the multicomponent structure of math anxiety, emotion regulation, and math performance, here, we aimed to provide a comprehensive model of the underlying nature of the links between these latent variables. Using the innovative network analysis approach, the study visualized the underlying links between directly observable and measurable variables that might be masked by traditional statistical approaches. One hundred and seventeen adults completed a battery of tests and questionnaires on math anxiety, emotion regulation, and math performance. The results revealed: (1) state math anxiety (the emotional experience in math-related situations), rather than trait math anxiety, was linked to anxiety predisposition, subjective valence of math information, and difficulties in emotion regulation; (2) the link between state math anxiety and math performance partialed out the link between trait math anxiety and performance. The study innovatively demonstrates the need to differentiate between traits and tendencies to the actual emotional experience and emotion regulation used in math anxiety. The results have important implications for the theoretical understanding of math anxiety and future discussions and work in the field
Mothers, Intrinsic Math Motivation, Arithmetic Skills, and Math Anxiety in Elementary School
Math anxiety is influenced by environmental, cognitive, and personal factors. Yet, the concurrent relationships between these factors have not been examined. To this end, the current study investigated how the math anxiety of 30 sixth graders is affected by: (a) mother’s math anxiety and maternal behaviors (environmental factors); (b) children’s arithmetic skills (cognitive factors); and (c) intrinsic math motivation (personal factor). A rigorous assessment of children’s math anxiety was made by using both explicit and implicit measures. The results indicated that accessible self-representations of math anxiety, as reflected by the explicit self-report questionnaire, were strongly affected by arithmetic skills. However, unconscious cognitive constructs of math anxiety, as reflected by the numerical dot-probe task, were strongly affected by environmental factors, such as maternal behaviors and mothers’ attitudes toward math. Furthermore, the present study provided preliminary evidence of intergenerational transmission of math anxiety. The conclusions are that in order to better understand the etiology of math anxiety, multiple facets of parenting and children’s skills should be taken into consideration. Implications for researchers, parents, and educators are discussed
Math Anxiety Is Related to Math Difficulties and Composed of Emotion Regulation and Anxiety Predisposition: A Network Analysis Study
Current evidence suggests emotion regulation is an important factor in both math anxiety and math performance, but the interplay between these constructs is unexamined. Given the multicomponent structure of math anxiety, emotion regulation, and math performance, here, we aimed to provide a comprehensive model of the underlying nature of the links between these latent variables. Using the innovative network analysis approach, the study visualized the underlying links between directly observable and measurable variables that might be masked by traditional statistical approaches. One hundred and seventeen adults completed a battery of tests and questionnaires on math anxiety, emotion regulation, and math performance. The results revealed: (1) state math anxiety (the emotional experience in math-related situations), rather than trait math anxiety, was linked to anxiety predisposition, subjective valence of math information, and difficulties in emotion regulation; (2) the link between state math anxiety and math performance partialed out the link between trait math anxiety and performance. The study innovatively demonstrates the need to differentiate between traits and tendencies to the actual emotional experience and emotion regulation used in math anxiety. The results have important implications for the theoretical understanding of math anxiety and future discussions and work in the field
A Framework for Studying the Heterogeneity of Risk Factors in Math Anxiety
Math anxiety is a prevalent disorder which affects many people worldwide. Here, we draw together ample evidence to suggest a dynamic developmental bio-psycho-social model. The model highlights the complex pathways towards the development of math anxiety, with a focus on dynamism. That is, math anxiety is viewed here as a dynamic interplay between environmental (parenting style, as well as social style including teachers’ attitude, instruction strategies and wider social effects) and intrinsic factors (i.e., neuro-cognitive and genetic predispositions, including brain malfunctions, heritability, predisposition towards general anxiety) and basic numerical cognition and affective factors. The model predicts that the dynamic interplay between these factors can either prevent or promote math anxiety’s effects on the development of heterogeneous symptoms. Considering the universal nature of math anxiety, a systematic description of the vulnerability factors that contribute to the development of math anxiety is vital. Such information may be of particular value in informing the design of preventive interventions as well as of specific intervention tools