221 research outputs found

    Automatic Detection of Malware-Generated Domains with Recurrent Neural Models

    Get PDF
    Modern malware families often rely on domain-generation algorithms (DGAs) to determine rendezvous points to their command-and-control server. Traditional defence strategies (such as blacklisting domains or IP addresses) are inadequate against such techniques due to the large and continuously changing list of domains produced by these algorithms. This paper demonstrates that a machine learning approach based on recurrent neural networks is able to detect domain names generated by DGAs with high precision. The neural models are estimated on a large training set of domains generated by various malwares. Experimental results show that this data-driven approach can detect malware-generated domain names with a F_1 score of 0.971. To put it differently, the model can automatically detect 93 % of malware-generated domain names for a false positive rate of 1:100.Comment: Submitted to NISK 201

    Not All Dialogues are Created Equal: Instance Weighting for Neural Conversational Models

    Full text link
    Neural conversational models require substantial amounts of dialogue data for their parameter estimation and are therefore usually learned on large corpora such as chat forums or movie subtitles. These corpora are, however, often challenging to work with, notably due to their frequent lack of turn segmentation and the presence of multiple references external to the dialogue itself. This paper shows that these challenges can be mitigated by adding a weighting model into the architecture. The weighting model, which is itself estimated from dialogue data, associates each training example to a numerical weight that reflects its intrinsic quality for dialogue modelling. At training time, these sample weights are included into the empirical loss to be minimised. Evaluation results on retrieval-based models trained on movie and TV subtitles demonstrate that the inclusion of such a weighting model improves the model performance on unsupervised metrics.Comment: Accepted to SIGDIAL 201

    Redefining Context Windows for Word Embedding Models: An Experimental Study

    Full text link
    Distributional semantic models learn vector representations of words through the contexts they occur in. Although the choice of context (which often takes the form of a sliding window) has a direct influence on the resulting embeddings, the exact role of this model component is still not fully understood. This paper presents a systematic analysis of context windows based on a set of four distinct hyper-parameters. We train continuous Skip-Gram models on two English-language corpora for various combinations of these hyper-parameters, and evaluate them on both lexical similarity and analogy tasks. Notable experimental results are the positive impact of cross-sentential contexts and the surprisingly good performance of right-context windows

    Probabilistic Dialogue Models with Prior Domain Knowledge

    Get PDF
    Probabilistic models such as Bayesian Networks are now in widespread use in spoken dialogue systems, but their scalability to complex interaction domains remains a challenge. One central limitation is that the state space of such models grows exponentially with the problem size, which makes parameter estimation increasingly difficult, especially for domains where only limited training data is available. In this paper, we show how to capture the underlying structure of a dialogue domain in terms of probabilistic rules operating on the dialogue state. The probabilistic rules are associated with a small, compact set of parameters that can be directly estimated from data. We argue that the introduction of this abstraction mechanism yields probabilistic models that are easier to learn and generalise better than their unstructured counterparts. We empirically demonstrate the benefits of such an approach learning a dialogue policy for a human-robot interaction domain based on a Wizard-of-Oz data set. Proceedings of the 13th Annual Meeting of the Special Interest Group on Discourse and Dialogue (SIGDIAL), pages 179–188, Seoul, South Korea, 5-6 July 2012

    Model-based Bayesian Reinforcement Learning for Dialogue Management

    Get PDF
    Reinforcement learning methods are increasingly used to optimise dialogue policies from experience. Most current techniques are model-free: they directly estimate the utility of various actions, without explicit model of the interaction dynamics. In this paper, we investigate an alternative strategy grounded in model-based Bayesian reinforcement learning. Bayesian inference is used to maintain a posterior distribution over the model parameters, reflecting the model uncertainty. This parameter distribution is gradually refined as more data is collected and simultaneously used to plan the agent's actions. Within this learning framework, we carried out experiments with two alternative formalisations of the transition model, one encoded with standard multinomial distributions, and one structured with probabilistic rules. We demonstrate the potential of our approach with empirical results on a user simulator constructed from Wizard-of-Oz data in a human-robot interaction scenario. The results illustrate in particular the benefits of capturing prior domain knowledge with high-level rules

    Should we use movie subtitles to study linguistic patterns of conversational speech? A study based on French, English and Taiwan Mandarin

    Get PDF
    International audienceLinguistic research benefits from the wide range of resources and software tools developed for natural language processing (NLP) tasks. However, NLP has a strong historical bias towards written language, thereby making these resources and tools often inadequate to address research questions related to the linguistic patterns of spontaneous speech. In this preliminary study, we investigate whether corpora of movie and TV subtitles can be employed to estimate data-driven NLP models adapted to conversational speech. In particular, the presented work explore lexical and syntactic distributional aspects across three genres (conversational, written and subtitles) and three languages (French, English and Taiwan Mandarin). Ongoing work focuses on comparing these three genres on the basis of deeper syntactic conversational patterns , using graph-based modelling and visualisation

    Detecting machine-translated subtitles in large parallel corpora

    Get PDF
    Parallel corpora extracted from online repositories of movie and TV subtitles are employed in a wide range of NLP applications, from language modelling to machine translation and dialogue systems. However, the subtitles uploaded in such repositories exhibit varying levels of quality. A particularly difficult problem stems from the fact that a substantial number of these subtitles are not written by human subtitlers but are simply generated through the use of online translation engines. This paper investigates whether these machine-generated subtitles can be detected automatically using a combination of linguistic and extra-linguistic features. We show that a feedforward neural network trained on a small dataset of subtitles can detect machine-generated subtitles with a F1-score of 0.64. Furthermore, applying this detection model on an unlabelled sample of subtitles allows us to provide a statistical estimate for the proportion of subtitles that are machine-translated (or are at least of very low quality) in the full corpus

    Generation of Replacement Options in Text Sanitization

    Get PDF

    A Graph-to-Text Approach to Knowledge-Grounded Response Generation in Human-Robot Interaction

    Full text link
    Knowledge graphs are often used to represent structured information in a flexible and efficient manner, but their use in situated dialogue remains under-explored. This paper presents a novel conversational model for human--robot interaction that rests upon a graph-based representation of the dialogue state. The knowledge graph representing the dialogue state is continuously updated with new observations from the robot sensors, including linguistic, situated and multimodal inputs, and is further enriched by other modules, in particular for spatial understanding. The neural conversational model employed to respond to user utterances relies on a simple but effective graph-to-text mechanism that traverses the dialogue state graph and converts the traversals into a natural language form. This conversion of the state graph into text is performed using a set of parameterized functions, and the values for those parameters are optimized based on a small set of Wizard-of-Oz interactions. After this conversion, the text representation of the dialogue state graph is included as part of the prompt of a large language model used to decode the agent response. The proposed approach is empirically evaluated through a user study with a humanoid robot that acts as conversation partner to evaluate the impact of the graph-to-text mechanism on the response generation. After moving a robot along a tour of an indoor environment, participants interacted with the robot using spoken dialogue and evaluated how well the robot was able to answer questions about what the robot observed during the tour. User scores show a statistically significant improvement in the perceived factuality of the robot responses when the graph-to-text approach is employed, compared to a baseline using inputs structured as semantic triples.Comment: Submitted to Dialogue & Discourse 202
    corecore