130 research outputs found
Hyper-Ramsey Spectroscopy of Optical Clock Transitions
We present non-standard optical Ramsey schemes that use pulses individually
tailored in duration, phase, and frequency to cancel spurious frequency shifts
related to the excitation itself. In particular, the field shifts and their
uncertainties of Ramsey fringes can be radically suppressed (by 2-4 orders of
magnitude) in comparison with the usual Ramsey method (using two equal pulses)
as well as with single-pulse Rabi spectroscopy. Atom interferometers and
optical clocks based on two-photon transitions, heavily forbidden transitions,
or magnetically induced spectroscopy could significantly benefit from this
method. In the latter case these frequency shifts can be suppressed
considerably below a fractional level of 10^{-17}. Moreover, our approach opens
the door for the high-precision optical clocks based on direct frequency comb
spectroscopy.Comment: 5 pages, 4 figure
A clock network for geodesy and fundamental science
Leveraging the unrivaled performance of optical clocks in applications in
fundamental physics beyond the standard model, in geo-sciences, and in
astronomy requires comparing the frequency of distant optical clocks
truthfully. Meeting this requirement, we report on the first comparison and
agreement of fully independent optical clocks separated by 700 km being only
limited by the uncertainties of the clocks themselves. This is achieved by a
phase-coherent optical frequency transfer via a 1415 km long telecom fiber link
that enables substantially better precision than classical means of frequency
transfer. The fractional precision in comparing the optical clocks of three
parts in was reached after only 1000 s averaging time, which is
already 10 times better and more than four orders of magnitude faster than with
any other existing frequency transfer method. The capability of performing high
resolution international clock comparisons paves the way for a redefinition of
the unit of time and an all-optical dissemination of the SI-second.Comment: 14 pages, 3 figures, 1 tabl
The optical calcium frequency standards of PTB and NIST
We describe the current status of the Ca optical frequency standards with
laser-cooled neutral atoms realized in two different laboratories for the
purpose of developing a possible future optical atomic clock.
Frequency measurements performed at the Physikalisch-Technische Bundesanstalt
(PTB) and the National Institute of Standards and Technology (NIST) make the
frequency of the clock transition of 40Ca one of the best known optical
frequencies (relative uncertainty 1.2e-14) and the measurements of this
frequency in both laboratories agree to well within their respective
uncertainties.
Prospects for improvement by orders of magnitude in the relative uncertainty
of the standard look feasible.Comment: 13 pages, 11 figures, to appear in Comptes Rendus Physiqu
Photoassociation spectroscopy of cold calcium atoms
Photoassociation spectroscopy experiments on 40Ca atoms close to the
dissociation limit 4s4s 1S0 - 4s4p 1P1 are presented. The vibronic spectrum was
measured for detunings of the photoassociation laser ranging from 0.6 GHz to 68
GHz with respect to the atomic resonance. In contrast to previous measurements
the rotational splitting of the vibrational lines was fully resolved. Full
quantum mechanical numerical simulations of the photoassociation spectrum were
performed which allowed us to put constraints on the possible range of the
calcium scattering length to between 50 a_0 and 300 a_0
Dark resonances for ground state transfer of molecular quantum gases
One possible way to produce ultracold, high-phase-space-density quantum gases
of molecules in the rovibronic ground state is given by molecule association
from quantum-degenerate atomic gases on a Feshbach resonance and subsequent
coherent optical multi-photon transfer into the rovibronic ground state. In
ultracold samples of Cs_2 molecules, we observe two-photon dark resonances that
connect the intermediate rovibrational level |v=73,J=2> with the rovibrational
ground state |v=0,J=0> of the singlet ground state potential.
For precise dark resonance spectroscopy we exploit the fact that it is possible
to efficiently populate the level |v=73,J=2> by two-photon transfer from the
dissociation threshold with the stimulated Raman adiabatic passage (STIRAP)
technique. We find that at least one of the two-photon resonances is
sufficiently strong to allow future implementation of coherent STIRAP transfer
of a molecular quantum gas to the rovibrational ground state |v=0,J=0>.Comment: 7 pages, 4 figure
Formation and interactions of cold and ultracold molecules: new challenges for interdisciplinary physics
Progress on researches in the field of molecules at cold and ultracold
temperatures is reported in this review. It covers extensively the experimental
methods to produce, detect and characterize cold and ultracold molecules
including association of ultracold atoms, deceleration by external fields and
kinematic cooling. Confinement of molecules in different kinds of traps is also
discussed. The basic theoretical issues related to the knowledge of the
molecular structure, the atom-molecule and molecule-molecule mutual
interactions, and to their possible manipulation and control with external
fields, are reviewed. A short discussion on the broad area of applications
completes the review.Comment: to appear in Reports on Progress in Physic
Geodesy and metrology with a transportable optical clock
partially_open24openGrotti, Jacopo; Koller, Silvio; Vogt, Stefan; Häfner, Sebastian; Sterr, Uwe; Lisdat, Christian; Denker, Heiner; Voigt, Christian; Timmen, Ludger; Rolland, Antoine; Baynes, Fred N.; Margolis, Helen S.; Zampaolo, Michel; Thoumany, Pierre; Pizzocaro, Marco; Rauf, Benjamin; Bregolin, Filippo; Tampellini, Anna; Barbieri, Piero; Zucco, Massimo; Costanzo, Giovanni A.; Clivati, Cecilia; Levi, Filippo; Calonico, DavideGrotti, Jacopo; Koller, Silvio; Vogt, Stefan; Häfner, Sebastian; Sterr, Uwe; Lisdat, Christian; Denker, Heiner; Voigt, Christian; Timmen, Ludger; Rolland, Antoine; Baynes, Fred N.; Margolis, Helen S.; Zampaolo, Michel; Thoumany, Pierre; Pizzocaro, Marco; Rauf, Benjamin; Bregolin, Filippo; Tampellini, Anna; Barbieri, Piero; Zucco, Massimo; Costanzo, Giovanni A.; Clivati, Cecilia; Levi, Filippo; Calonico, David
- …