21 research outputs found

    Effects of full-fat high-oleic soybean meal in layer diets on nutrient digestibility and egg quality parameters of a white laying hen strain

    Get PDF
    This study was conducted to understand the impact of including full fat high-oleic soybean meal in layer hen diets on nutrient digestibility and added nutritional value in eggs. Forty-eight layers (∼36 wk old) were randomly assigned to one of 4 isonitrogenous (18.5% crude protein) treatment diets with 12 replicate birds per treatment in a 3-wk study. Treatments were 1) solvent extracted defatted soybean meal + corn diet, 2) dry extruded defatted soybean meal + corn, 3) full-fat soybean meal + corn, 4) high-oleic full-fat soybean meal + corn diet. Apparent ileal digestibility of crude fat (CF) and crude protein (CP) were determined using celite (∼2%) as an indigestible marker. Tibia strength and egg quality parameters (egg weight, shell strength, Haugh unit, shell color, and yolk color) were recorded during the study. Fatty acid profiles, including the monounsaturated fatty acid, oleic acid (C18:1, cis), in eggs and adipogenic tissue (liver, muscle, and fat pad) were measured using gas chromatography (GC-FID). Digestibility values of CF ranged from 71 to 84% and CP varied from 67 to 72% for treatment diets, with treatment mean values being no different (P \u3e 0.05) between treatment diets. No differences between treatment diets in tibia strength or egg quality parameters (egg weight, shell strength, and Haugh unit) were observed (P \u3e 0.05) except for yolk color. Similarly, there were no differences in the total lipids in egg yolk (P \u3e 0.05) between treatment diets. However, oleic acid percentage of total lipid in egg and tissue was significantly higher (P \u3c 0.001) in hens given the high-oleic full-fat soybean meal diet than in other treatment groups. No difference was observed in oleic acid percentage of total lipid in egg between the other 3 treatment diets (P \u3e 0.05). Overall, the results exhibited that the eggs and tissue of layer hens fed the full-fat high-oleic acid soybean meal diet were higher in oleic acid while the CF and CP digestibility remained similar to the digestibility of the other diets

    Interactions Between Laminin Receptor and the Cytoskeleton During Translation and Cell Motility

    Get PDF
    Human laminin receptor acts as both a component of the 40S ribosomal subunit to mediate cellular translation and as a cell surface receptor that interacts with components of the extracellular matrix. Due to its role as the cell surface receptor for several viruses and its overexpression in several types of cancer, laminin receptor is a pathologically significant protein. Previous studies have determined that ribosomes are associated with components of the cytoskeleton, however the specific ribosomal component(s) responsible has not been determined. Our studies show that laminin receptor binds directly to tubulin. Through the use of siRNA and cytoskeletal inhibitors we demonstrate that laminin receptor acts as a tethering protein, holding the ribosome to tubulin, which is integral to cellular translation. Our studies also show that laminin receptor is capable of binding directly to actin. Through the use of siRNA and cytoskeletal inhibitors we have shown that this laminin receptor-actin interaction is critical for cell migration. These data indicate that interactions between laminin receptor and the cytoskeleton are vital in mediating two processes that are intimately linked to cancer, cellular translation and migration

    Evaluating Strain Variations in Routes of Clostridium difficile Infections (CDI)

    No full text
    Clostridium difficile is an anaerobic spore-forming, gram-positive bacillus that is frequently implicated in antibiotic-associated diarrhea and infection, especially among hospitalized patients C. difficile infection (CDI) has emerged as a global concern as the incidence of disease and mortality around the world appear to be increasing. These strains are resistant to different antibiotics rendering treatment ineffective. For those who already have comorbidities, CDI infections present a greater risk of adverse health outcomes and mortality. The presentation of CDI shows different strain type involvements depending on location. Numerous studies have assessed the strain variation and risk factors for these unfavorable outcomes, but systematic reviews published have been limited in scope, restricted to certain locations, or lacking in quality. A systematic review was completed to evaluate which of the following exposure-to-development routes was most prevalent for CDI along with determining which strains appear as drivers for the different routes of infections. Most common route is hospital-acquired and hospital-onset while most common strain types are RT027, RT001, and RT017. Given the varying case definitions and outcome measurements, these studies are limited in fully measuring the association of CDI to exposure in either community or hospital settings. In addition, sampling from hospital settings presents specific biases (e.g. Berkson\u27s bias, survivorship bias) that can affect the true associations measured. This review has found some differences in strains that manifest in community or hospital settings. Exposure-to-development routes still are not fully understood, and more focus should be placed on understanding how C. difficile is transmitted and develops into CDI

    Fetuin-A and thyroxin binding globulin predict rituximab response in rheumatoid arthritis patients with insufficient response to anti-TNFα

    No full text
    International audienceObjectivesRheumatoid arthritis (RA) is a debilitating disease, but patient management and treatment have been revolutionized since the advent of bDMARDs. However, about one third of RA patients do not respond to specific bDMARD treatment without clear identified reasons. Different bDMARDs must be tried until the right drug is found. Here, we sought to identify a predictive protein signature to stratify patient responsiveness to rituximab (RTX) among patients with an insufficient response to a first anti-TNFα treatment.MethodsSerum samples were collected at baseline before RTX initiation. A proteomics study comparing responders and nonresponders was conducted to identify and select potential predictive biomarkers whose concentration was measured by quantitative assays. Logistic regression was performed to determine the best biomarker combination to predict good or nonresponse to RTX (EULAR criteria after 6 months’ treatment).ResultsEleven biomarkers potentially discriminating between responders and nonresponders were selected following discovery proteomics. Quantitative immunoassays and univariate statistical analysis showed that fetuin-A and thyroxine binding globulin (TBG) presented a good capacity to discriminate between patient groups. A logistic regression analysis revealed that the combination of fetuin-A plus TBG could accurately predict a patient’s responsiveness to RTX with an AUC of 0.86, sensitivity of 80%, and a specificity of 79%.ConclusionIn RA patients for whom a first anti-TNFα treatment has failed, the serum abundance of fetuin-A and TBG before initiating RTX treatment is an indicator for their response status at 6 months. ClinicalTrials.gov identifier: NCT01000441

    Assessing the sensitivity of placental growth factor and soluble fms-like tyrosine kinase 1 at 36 weeks’ gestation to predict small-for-gestational-age infants or late-onset preeclampsia: a prospective nested case-control study

    No full text
    Abstract Background Fetal growth restriction is a disorder of placental dysfunction with three to four-fold increased risk of stillbirth. Fetal growth restriction has pathophysiological features in common with preeclampsia. We hypothesised that angiogenesis-related factors in maternal plasma, known to predict preeclampsia, may also detect fetal growth restriction at 36 weeks’ gestation. We therefore set out to determine the diagnostic performance of soluble fms-like tyrosine kinase 1 (sFlt-1), placental growth factor (PlGF), and the sFlt-1:PlGF ratio, measured at 36 weeks’ gestation, in identifying women who subsequently give birth to small-for-gestational-age (SGA; birthweight <10th centile) infants. We also aimed to validate the predictive performance of the analytes for late-onset preeclampsia in a large independent, prospective cohort. Methods A nested 1:2 case-control study was performed including 102 cases of SGA infants and a matched group of 207 controls; and 39 cases of preeclampsia. We determined the diagnostic performance of each angiogenesis-related factor, and of their ratio, to detect SGA infants or preeclampsia, for a predetermined 10% false positive rate. Results Median plasma levels of PlGF at 36 weeks’ gestation were significantly lower in women who subsequently had SGA newborns (178.5 pg/ml) compared to normal birthweight controls (326.7 pg/ml, p < 0.0001). sFlt-1 was also higher among SGA cases, but this was not significant after women with concurrent preeclampsia were excluded. The sensitivity of PlGF to predict SGA infants was 28.8% for a 10% false positive rate. The sFlt-1:PlGF ratio demonstrated better sensitivity for preeclampsia than either analyte alone, detecting 69.2% of cases for a 10% false positive rate. Conclusions Plasma PlGF at 36 weeks’ gestation is significantly lower in women who subsequently deliver a SGA infant. While the sensitivity and specificity of PlGF currently limit clinical translation, our findings support a blood-based biomarker approach to detect late-onset fetal growth restriction. Thirty-six week sFlt-1:PlGF ratio predicts 69.2% of preeclampsia cases, and could be a useful screening test to triage antenatal surveillance

    The GCaMP‑R Family of Genetically Encoded Ratiometric Calcium Indicators

    No full text
    We report on GCaMP-Rs, a new family of genetically encoded ratiometric calcium indicators that extend the virtues of the GCaMP proteins to ratiometric measurements. We have engineered a tandem construct of calcium-dependent GCaMP and calcium-independent mCherry fluorescent proteins. The tandem design assures that the two proteins localize in the same cellular compartment(s) and facilitates pixelwise ratiometric measurements; however, Förster resonance energy transfer (FRET) between the fluorophores reduces brightness of the sensor by up to half (depending on the GCaMP variant). To eliminate FRET, we introduced a rigid α-helix, the ER/K helix, between GCaMP and mCherry. Avoiding FRET significantly increases the brightness (notably, even at low calcium concentrations), the signal-to-noise ratio, and the dynamic range
    corecore