2,762 research outputs found
Migration of giant planets in planetesimal discs
Planets orbiting a planetesimal circumstellar disc can migrate inward from
their initial positions because of dynamical friction between planets and
planetesimals. The migration rate depends on the disc mass and on its time
evolution. Planets that are embedded in long-lived planetesimal discs, having
total mass of , can migrate inward a large distance and
can survive only if the inner disc is truncated or because of tidal interaction
with the star. In this case the semi-major axis, a, of the planetary orbit is
less than 0.1 AU. Orbits with larger are obtained for smaller value of the
disc mass or for a rapid evolution (depletion) of the disc. This model may
explain several of the orbital features of the giant planets that were
discovered in last years orbiting nearby stars as well as the metallicity
enhancement found in several stars associated with short-period planets.Comment: 21 pages; 6 encapsulated figures. Accepted by MNRA
Remote sensing of tropical tropopause layer radiation balance using A-train measurements
Determining the level of zero net radiative heating (LZH) is critical to understanding parcel trajectory in the Tropical Tropopause Layer (TTL) and associated stratospheric hydration processes. Previous studies of the TTL radiative balance have focused on using radiosonde data, but remote sensing measurements from polar-orbiting satellites may provide the relevant horizontal and vertical information for assessing TTL solar heating and infrared cooling rates, especially across the Pacific Ocean. CloudSat provides a considerable amount of vertical information about the distribution of cloud properties relevant to heating rate analysis. The ability of CloudSat measurements and ancillary information to constrain LZH is explored. We employ formal error propagation analysis for derived heating rate uncertainty given the CloudSat cloud property retrieval algorithms. Estimation of the LZH to within approximately 0.5 to 1 km is achievable with CloudSat, but it has a low-altitude bias because the radar is unable to detect thin cirrus. This can be remedied with the proper utilization of Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) lidar backscatter information. By utilizing an orbital simulation with the GISS data set, we explore the representativeness of non-cross-track scanning active sounders in terms of describing the LZH distribution. In order to supplement CloudSat, we explore the ability of Atmospheric Infrared Sounder (AIRS) and Advanced Microwave Scanning Radiometer-EOS (AMSR-E) to constrain LZH and find that these passive sounders are useful where the cloud top height does not exceed 7 km. The spatiotemporal distributions of LZH derived from CloudSat and CALIPSO measurements are presented which suggest that thin cirrus have a limited effect on LZH mean values but affect LZH variability
The effects of small ice crystals on the infrared radiative properties of cirrus clouds
To be successful in the development of satellite retrieval methodologies for the determination of cirrus cloud properties, we must have fundamental scattering and absorption data on nonspherical ice crystals that are found in cirrus clouds. Recent aircraft observations (Platt et al. 1989) reveal that there is a large amount of small ice particles, on the order of 10 micron, in cirrus clouds. Thus it is important to explore the potential differences in the scattering and absorption properties of ice crystals with respect to their sizes and shapes. In this study the effects of nonspherical small ice crystals on the infrared radiative properties of cirrus clouds are investigated using light scattering properties of spheroidal particles. In Section 2, using the anomalous diffraction theory for spheres and results from the exact spheroid scattering program, efficient parameterization equations are developed for calculations of the scattering and absorption properties for small ice crystals. Parameterization formulas are also developed for large ice crystals using results computed from the geometric ray-tracing technique and the Fraunhofer diffraction theory for spheroids and hexagonal crystals. This is presented in Section 3. Finally, applications to the satellite remote sensing are described in Section 4
Cellular Ability to Sense Spatial Gradients in the Presence of Multiple Competitive Ligands
Many eukaryotic and prokaryotic cells can exhibit remarkable sensing ability
under small gradient of chemical compound. In this study, we approach this
phenomenon by considering the contribution of multiple ligands to the chemical
kinetics within Michaelis-Menten model. This work was inspired by the recent
theoretical findings from Bo Hu et al. [Phys. Rev. Lett. 105, 048104 (2010)],
our treatment with practical binding energies and chemical potential provides
the results which are consistent with experimental observations.Comment: 5 pages, 4 figure
Earth Satellite Population Instability: Underscoring the Need for Debris Mitigation
A recent study by NASA indicates that the implementation of international orbital debris mitigation measures alone will not prevent a significant increase in the artificial Earth satellite population, beginning in the second half of this century. Whereas the focus of the aerospace community for the past 25 years has been on the curtailment of the generation of long-lived orbital debris, active remediation of the current orbital debris population should now be reconsidered to help preserve near-Earth space for future generations. In particular, we show in this paper that even if launch operations were to cease today, the population of space debris would continue to grow. Further, proposed remediation techniques do not appear to offer a viable solution. We therefore recommend that, while the aerospace community maintains the current debris-limiting mission regulations and postmission disposal procedures, future emphasis should be placed on finding new remediation technologies for solving this growing problem. Since the launch of Sputnik 1, space activities have created an orbital debris environment that poses increasing impact risks to existing space systems, including human space flight and robotic missions (1, 2). Currently, more than 9,000 Earth orbiting man-made objects (including many breakup fragments), with a combined mass exceeding 5 million kilograms, are tracked by the US Space Surveillance Network and maintained in the US satellite catalog (3-5). Three accidental collisions between cataloged satellites during the period from late 1991 to early 2005 have already been documented (6), although fortunately none resulted in the creation of large, trackable debris clouds. Several studies conducted during 1991-2001 demonstrated, with assumed future launch rates, the unintended growth potential of the Earth satellite population, resulting from random, accidental collisions among resident space objects (7-13). In some low Earth orbit (LEO) altitude regimes where the number density of satellites is above a critical spatial density, the production rate of new satellites (i.e., debris) due to collisions exceeds the loss of objects due to orbital decay. NASA s evolutionary satellite population model LEGEND (LEO-to-GEO Environment Debris model), developed by the Orbital Debris Program Office at the NASA Lyndon B. Johnson Space Center, is a high fidelity three-dimensional physical model that is capable of simulating the historical satellite environment, as well as the evolution of future debris populations (14, 15). The subject study assumed no rocket bodies and spacecraft were launched after December 2004, and no future disposal maneuvers were allowed for existing spacecraft, few of which currently have such a capability. The rate of satellite explosions would naturally decrease to zero within a few decades as the current satellite population ages. The LEGEND future projection adopts a Monte Carlo approach to simulate future on-orbit explosions and collisions. Within a given projection time step, once the explosion probability is estimated for an intact object, a random number is drawn and compared with the probability to determine if an explosion would occur. A similar procedure is applied to collisions for each pair of target and projectile involved within the same time step. Due to the nature of the Monte Carlo process, multiple projection runs must be performed and analyzed before one can draw reliable and meaningful conclusions from the outcome. A total of fifty, 200-year future projection Monte Carlo simulations were executed and evaluated (16)
The single-scattering properties of black carbon aggregates determined from the geometric-optics surface-wave approach and the T-matrix method
The single-scattering properties of eight black carbon (BC, soot) fractal aggregates, composed of primary spheres from 7 to 600, computed by the geometric-optics surface-wave (GOS) approach coupled with the Rayleigh-Gans-Debye (RGD) adjustment for size parameters smaller than approximately 2, are compared with those determined from the superposition T-matrix method. We show that under the condition of random orientation, the results from GOS/RGD are in general agreement with those from T-matrix in terms of the extinction and absorption cross-sections, the single-scattering co-albedo, and the asymmetry factor. When compared with the specific absorption (m(2)/g) measured in the laboratory, we illustrate that using the observed radii of primary spheres ranging from 3.3 to 25 nm, the theoretical values determined from GOS/RGD for primary sphere numbers of 100-600 are within the range of measured values. The GOS approach can be effectively applied to aggregates composed of a large number of primary spheres (e.g., > 6000) and large size parameters (>> 2) in terms of computational efforts
Dust aerosol impact on North Africa climate: a GCM investigation of aerosol-cloud-radiation interactions using A-Train satellite data
The climatic effects of dust aerosols in North Africa have been investigated using the atmospheric general circulation model (AGCM) developed at the University of California, Los Angeles (UCLA). The model includes an efficient and physically based radiation parameterization scheme developed specifically for application to clouds and aerosols. Parameterization of the effective ice particle size in association with the aerosol first indirect effect based on ice cloud and aerosol data retrieved from A-Train satellite observations have been employed in climate model simulations. Offline simulations reveal that the direct solar, IR, and net forcings by dust aerosols at the top of the atmosphere (TOA) generally increase with increasing aerosol optical depth. When the dust semi-direct effect is included with the presence of ice clouds, positive IR radiative forcing is enhanced since ice clouds trap substantial IR radiation, while the positive solar forcing with dust aerosols alone has been changed to negative values due to the strong reflection of solar radiation by clouds, indicating that cloud forcing associated with aerosol semi-direct effect could exceed direct aerosol forcing. With the aerosol first indirect effect, the net cloud forcing is generally reduced in the case for an ice water path (IWP) larger than 20 g m<sup>&minus;2</sup>. The magnitude of the reduction increases with IWP. <br><br> AGCM simulations show that the reduced ice crystal mean effective size due to the aerosol first indirect effect results in less OLR and net solar flux at TOA over the cloudy area of the North Africa region because ice clouds with smaller size trap more IR radiation and reflect more solar radiation. The precipitation in the same area, however, increases due to the aerosol indirect effect on ice clouds, corresponding to the enhanced convection as indicated by reduced OLR. Adding the aerosol direct effect into the model simulation reduces the precipitation in the normal rainfall band over North Africa, where precipitation is shifted to the south and the northeast produced by the absorption of sunlight and the subsequent heating of the air column by dust particles. As a result, rainfall is drawn further inland to the northeast. This study represents the first attempt to quantify the climate impact of the aerosol indirect effect using a GCM in connection with A-Train satellite data. The parameterization for the aerosol first indirect effect developed in this study can be readily employed for application to other GCMs
Photo-induced radical polarization and liquid-state dynamic nuclear polarization using fullerene nitroxide derivatives.
We report on radical polarization and optically-driven liquid DNP using nitroxide radicals functionalized by photoexcitable fullerene derivatives. Pulse laser excitation of the fullerene moiety leads to transient nitroxide radical polarization that is one order of magnitude larger than that at the Boltzmann equilibrium. The life time of the radical polarization increases with the size of the fullerene derivative and is correlated with the electronic spin-lattice relaxation time T1e. Overhauser NMR signal enhancements of toluene solvent protons were observed under steady-state illumination, which replaced microwave irradiation
Urothelial cells may indicate underlying bacteriuria in pregnancy at term: a comparative study
BACKGROUND: Urinary tract infection is common in pregnancy. Urine is sampled from by mid-stream collection (MSU). If epithelial cells are detected, contamination by vulvo-vagial skin and skin bacteria is assumed. Outside pregnancy, catheter specimen urine (CSU) is considered less susceptible to contamination. We compared MSU and CSU methods in term pregnancy to test these assumptions.
METHODS: Healthy pregnant women at term gestation (n = 32, median gestation 38 + 6 weeks, IQR 37 + 6–39 + 2) undergoing elective caesarean section provided a MSU and CSU for paired comparison that were each analysed for bacterial growth and bladder distress by fresh microscopy, sediment culture and immunofluorescent staining. Participants completed a detailed questionnaire on lower urinary tract symptoms. Epithelial cells found in urine were tested for urothelial origin by immunofluorescent staining of Uroplakin III (UP3), a urothelial cell surface glycoprotein. Urothelial cells with closely associated bacteria, or “clue cells”, were also counted. Wilcoxons signed rank test was used for paired analysis.
RESULTS: Women reported multiple lower urinary tract symptoms (median 3, IQR 0–8). MSU had higher white blood cell counts (median 67 vs 46, z = 2.75, p = 0.005) and epithelial cell counts (median 41 vs 22, z = 2.57, p = 0.009) on fresh microscopy. The proportion of UP3+ cells was not different (0.920 vs 0.935, z = 0.08, p = 0.95), however MSU had a higher proportion of clue cells (0.978 vs 0.772, z = 3.17, p = 0.001). MSU had more bacterial growth on sediment culture compared to CSU specimens (median 8088 total cfu/ml vs 0, z = 4.86, p = 0.001). Despite this, routine laboratory cultures reported a negative screening culture for 40.6% of MSU specimens.
CONCLUSION: Our findings have implications for the correct interpretation of MSU findings in term pregnancy. We observed that MSU samples had greater bacterial growth and variety when compared to CSU samples. The majority of epithelial cells in both MSU and CSU samples were urothelial in origin, implying no difference in contamination. MSU samples had a higher proportion of clue cells to UP3+ cells, indicating a greater sensitivity to bacterial invasion. Urinary epithelial cells should not be disregarded as contamination, instead alerting us to underlying bacterial activity
Simulating 3-D radiative transfer effects over the Sierra Nevada Mountains using WRF
A surface solar radiation parameterization based on deviations between 3-D and conventional plane-parallel radiative transfer models has been incorporated into the Weather Research and Forecasting (WRF) model to understand the solar insolation over mountain/snow areas and to investigate the impact of the spatial and temporal distribution and variation of surface solar fluxes on land-surface processes. Using the Sierra-Nevada in the western United States as a testbed, we show that mountain effect could produce up to −50 to + 50 W m<sup>−2</sup> deviations in the surface solar fluxes over the mountain areas, resulting in a temperature increase of up to 1 °C on the sunny side. Upward surface sensible and latent heat fluxes are modulated accordingly to compensate for the change in surface solar fluxes. Snow water equivalent and surface albedo both show decreases on the sunny side of the mountains, indicating more snowmelt and hence reduced snow albedo associated with more solar insolation due to mountain effect. Soil moisture increases on the sunny side of the mountains due to enhanced snowmelt, while decreases on the shaded side. Substantial differences are found in the morning hours from 8–10 a.m. and in the afternoon around 3–5 p.m., while differences around noon and in the early morning and late afternoon are comparatively smaller. Variation in the surface energy balance can also affect atmospheric processes, such as cloud fields, through the modulation of vertical thermal structure. Negative changes of up to −40 g m<sup>−2</sup> are found in the cloud water path, associated with reductions in the surface insolation over the cloud region. The day-averaged deviations in the surface solar flux are positive over the mountain areas and negative in the valleys, with a range between −12~12 W m<sup>−2</sup>. Changes in sensible and latent heat fluxes and surface skin temperature follow the solar insolation pattern. Differences in the domain-averaged diurnal variation over the Sierras show that the mountain area receives more solar insolation during early morning and late afternoon, resulting in enhanced upward sensible heat and latent heat fluxes from the surface and a corresponding increase in surface skin temperature. During the middle of the day, however, the surface insolation and heat fluxes show negative changes, indicating a cooling effect. Hence overall, the diurnal variations of surface temperature and surface fluxes in the Sierra-Nevada are reduced through the interactions of radiative transfer and mountains. The hourly differences of the surface solar insolation in higher elevated regions, however, show smaller magnitude in negative changes during the middle of the day and possibly more solar fluxes received during the whole day
- …