4 research outputs found

    Analysis and Consequences of the Iridium 33-Cosmos 2251 Collision

    Get PDF
    The collision of Iridium 33 and Cosmos 2251, on 10 February 2009, was the first known unintentional hypervelocity collision in space of intact satellites. Iridium 33 was an active commercial telecommunications satellite, while Cosmos 2251 was a derelict communication satellite of the Strela-2M class. The collision occurred at a relative velocity of 11.6 km/s at an altitude of approximately 790 km over the Great Siberian Plain and near the northern apex of Cosmos 2251 s orbit. This paper describes the physical and orbital characteristics of the relevant spacecraft classes and reports upon our analysis of the resulting debris clouds size, mass, area-to-mass ratio, and relative velocity/directionality distributions. We compare these distributions to those predicted by the NASA breakup model and notable recent fragmentation events; in particular, we compare the area-to-mass ratio distribution for each spacecraft to that exhibited by the FY-1C debris cloud for the purpose of assessing the relative contribution of modern aerospace materials to debris clouds resulting from energetic collisions. In addition, we examine the long-term consequences of this event for the low Earth orbit (LEO) environment. Finally, we discuss "lessons learned", which may be incorporated into NASA s environmental models

    Compassionate Treatment of Brainstem Tumors with Boron Neutron Capture Therapy: A Case Series

    No full text
    Brainstem tumors are heterogenous and cancerous glioma tumors arising from the midbrain, pons, and the medulla that are relatively common in children, accounting for 10% to 20% of all pediatric brain tumors. However, the prognosis of aggressive brainstem gliomas remains extremely poor despite aggressive treatment with chemotherapy and radiotherapy. That means there are many life-threatening patients who have exhausted all available treatment options and are beginning to face end-of-life stage. Therefore, the unique properties of highly selective heavy particle irradiation with boron neutron capture therapy (BNCT) may be well suited to prolong the lives of patients with end-stage brainstem gliomas. Herein, we report a case series of life-threatening patients with end-stage brainstem glioma who eligible for Emergency and Compassionate Use, in whom we performed a scheduled two fractions of salvage BNCT strategy with low treatment dosage each time. No patients experienced acute or late adverse events related to BNCT. There were 3 patients who relapsed after two fractionated BNCT treatment, characterized by younger age, lower T/N ratio, and receiving lower treatment dose. Therefore, two fractionated low-dose BNCT may be a promising treatment for end-stage brainstem tumors. For younger patients with low T/N ratios, more fractionated low-dose BNCT should be considered
    corecore