189 research outputs found
The triennial International Pigment Cell Conference (IPCC)
The International Federation of Pigment Cell Societies (IFPCS) held its XXIII
triennial International Pigment Cell Conference (IPCC) in Denver, Colorado in
August 2017. The goal of the summit was to provide a venue promoting a vibrant
interchange among leading basic and clinical researchers working on
leading-edge aspects of melanocyte biology and disease. The philosophy of the
meeting, entitled Breakthroughs in Pigment Cell and Melanoma Research, was to
deliver a comprehensive program in an inclusive environment fostering
scientific exchange and building new academic bridges. This document provides
an outlook on the history, accomplishments, and sustainability of the pigment
cell and melanoma research community. Shared progress in the understanding of
cellular homeostasis of pigment cells but also clinical successes and hurdles
in the treatment of melanoma and dermatological disorders continue to drive
future research activities. A sustainable direction of the societies creates an
international forum identifying key areas of imminent needs in laboratory
research and clinical care and ensures the future of this vibrant, diverse and
unique research community at the same time. Important advances showcase wealth
and breadth of the field in melanocyte and melanoma research and include
emerging frontiers in melanoma immunotherapy, medical and surgical oncology,
dermatology, vitiligo, albinism, genomics and systems biology, precision
bench-to-bedside approaches, epidemiology, pigment biophysics and chemistry,
and evolution. This report recapitulates highlights of the federate meeting
agenda designed to advance clinical and basic research frontiers from melanoma
and dermatological sciences followed by a historical perspective of the
associated societies and conferences
Activated mutant NRasQ61K drives aberrant melanocyte signaling, survival, and invasiveness via a rac1-Dependent mechanism
Around a fifth of melanomas exhibit an activating mutation in the oncogene NRas that confers constitutive signaling to proliferation and promotes tumor initiation. NRas signals downstream of the major melanocyte tyrosine kinase receptor c-kit and activated NRas results in increased signaling via the extracellular signal–regulated kinase (ERK)/MAPK/ERK kinase/mitogen-activated protein kinase (MAPK) pathways to enhance proliferation. The Ras oncogene also activates signaling via the related Rho GTPase Rac1, which can mediate growth, survival, and motility signaling. We tested the effects of activated NRasQ61K on the proliferation, motility, and invasiveness of melanoblasts and melanocytes in the developing mouse and ex vivo explant culture as well as in a melanoma transplant model. We find an important role for Rac1 downstream of NRasQ61K in mediating dermal melanocyte survival in vivo in mouse, but surprisingly NRasQ61K does not appear to affect melanoblast motility or proliferation during mouse embryogenesis. We also show that genetic deletion or pharmacological inhibition of Rac1 in NRasQ61K induced melanoma suppresses tumor growth, lymph node spread, and tumor cell invasiveness, suggesting a potential value for Rac1 as a therapeutic target for activated NRas-driven tumor growth and invasiveness
Melanoma risk and melanocyte biology
Funding text This work was supported by the Ligue Contre le Cancer, INCa, ITMO Cancer, Fondation ARC (PGA), and is under the program “Investissements d’Avenir” launched by the French Government and implemented by ANR Labex CelTisPhyBio (ANR-11-LA-BX-0038 and ANR-10-IDEX-0001-02 PSL). This work was also supported by a grant from the Icelandic Research Fund (grant number 184861-051 to ES). BBdP is nationwide coordinator of melanoma oncogenetics for INCA. Publisher Copyright: © 2020 Acta Dermato-Venereologica.Cutaneous melanoma arises from melanocytes following genetic, epigenetic and allogenetic (i.e. other than epi/genetic) modifications. An estimated 10% of cutaneous melanoma cases are due to inherited variants or de novo mutations in approximately 20 genes, found using linkage, next-generation sequencing and association studies. Based on these studies, 3 classes of predisposing melanoma genes have been defined based on the frequency of the variants in the general population and lifetime risk of developing a melanoma: (i) ultra-rare variants with a high risk, (ii) rare with a moderate risk, and (iii) frequent variants with a low risk. Most of the proteins encoded by these genes have been shown to be involved in melanoma initiation, including proliferation and senescence bypass. This paper reviews the role(s) of these genes in the transformation of melanocytes into melanoma. It also describes their function in the establishment and renewal of melanocytes and the biology of pigment cells, if known.Peer reviewe
What is a vertebrate pigment cell?
On the basis of discussions emerging from a workshop and discussions at the 7th meeting of the European Society for Pigment Cell Research in Geneva in 2012 this manuscript outlines useful criteria for defining the bona-fide pigment cells as a functional entity of the vertebrate body plan and differentiating them from “pigmented” cells in general. It also proposes a nomenclature for the various types of pigment cells of vertebrates
Notch signaling via Hes1 transcription factor maintains survival of melanoblasts and melanocyte stem cells
Melanoblasts (Mbs) are thought to be strictly regulated by cell–cell interactions with epidermal keratinocytes, although the precise molecular mechanism of the regulation has been elusive. Notch signaling, whose activation is mediated by cell–cell interactions, is implicated in a broad range of developmental processes. We demonstrate the vital role of Notch signaling in the maintenance of Mbs, as well as melanocyte stem cells (MSCs). Conditional ablation of Notch signaling in the melanocyte lineage leads to a severe defect in hair pigmentation, followed by intensive hair graying. The defect is caused by a dramatic elimination of Mbs and MSCs. Furthermore, targeted overexpression of Hes1 is sufficient to protect Mbs from the elimination by apoptosis. Thus, these data provide evidence that Notch signaling, acting through Hes1, plays a crucial role in the survival of immature Mbs by preventing initiation of apoptosis
E-cadherin can limit the transforming properties of activating β-catenin mutations
Wnt pathway deregulation is a common characteristic of many cancers. But only Colorectal Cancer predominantly harbours mutations in APC, whereas other cancer types (hepatocellular carcinoma, solid pseudopapillary tumours of pancreas) have activating mutations in β-catenin (CTNNB1). We have compared the dynamics and the potency of β-catenin mutations in vivo. Within the murine small intestine (SI), an activating mutation of β-catenin took much longer to achieve a Wnt deregulation and acquire a crypt-progenitor-cell (CPC) phenotype than Apc or Gsk3 loss. Within the colon, a single activating mutation of β-catenin was unable to drive Wnt deregulation or induce the CPC phenotype. This ability of β-catenin mutation to differentially transform the SI versus the colon correlated with significantly higher expression of the β-catenin binding partner E-cadherin. This increased expression is associated with a higher number of E-cadherin:β-catenin complexes at the membrane. Reduction of E-cadherin synergised with an activating mutation of β-catenin so there was now a rapid CPC phenotype within the colon and SI. Thus there is a threshold of β-catenin that is required to drive transformation and E-cadherin can act as a buffer to prevent β-catenin accumulation
MITF and TFEB cross-regulation in melanoma cells
Publisher's version (útgefin grein)The MITF, TFEB, TFE3 and TFEC (MiT-TFE) proteins belong to the basic helix-loop-helix family of leucine zipper transcription factors. MITF is crucial for melanocyte development and differentiation, and has been termed a lineage-specific oncogene in melanoma. The three related proteins MITF, TFEB and TFE3 have been shown to be involved in the biogenesis and function of lysosomes and autophagosomes, regulating cellular clearance pathways. Here we investigated the cross-regulatory relationship of MITF and TFEB in melanoma cells. Like MITF, the TFEB and TFE3 genes are expressed in melanoma cells as well as in melanoma tumors, albeit at lower levels. We show that the MITF and TFEB proteins, but not TFE3, directly affect each other’s mRNA and protein expression. In addition, the subcellular localization of MITF and TFEB is subject to regulation by the mTOR signaling pathway, which impacts their cross-regulatory relationship at the transcriptional level. Our work shows that the relationship between MITF and TFEB is multifaceted and that the cross-regulatory interactions of these factors need to be taken into account when considering pathways regulated by these proteins.ES, 130230-052, Research fund of Iceland, www.rannis.is ES, 163413-051, Research fund of Iceland, www.rannis.is.Peer Reviewe
- …