1 research outputs found
Time and time-frequency analysis of near-infrared signals for the assessment of ozone autohemotherapy long-term effects in multiple sclerosis
Ozone autohemotherapy is an emerging therapeutic technique that is gaining increasing importance in treating neurological disorders. A validated and standard methodology to assess the effect of such therapy on brain metabolism and circulation is however still lacking. We used a near-infrared spectroscopy system (NIRS) to monitor the cerebral oxygenation of 9 subjects: 4 remitting-relapsing multiple sclerosis (MS) sufferers and 5 controls. Subjects were tested before, during, and after ozone autohemotherapy. We monitored the concentration changes in the level of oxygenated and deoxygenated haemoglobin, and in the level of the Cytochrome-c-oxidase (CYT-c). From the time and time-frequency analysis of the NIRS signals we extracted 128 variables, which were used to characterize the metabolic brain pattern during the therapy. We showed that by using only 7 NIRS variables out of 128 it is possible to characterize the metabolic brain pattern of the two groups of subjects. The MS subjects showed a marked increase of the CYT-c activity and concentration about 40 minutes after the end of the autohemotherapy, possibly revealing a reduction of the chronic oxidative stress level typical of MS sufferers. From a technical point of view, this preliminary study showed that NIRS could be useful to show the effects of ozone autohemotherapy at cerebral level, in a long term monitoring. The clinical result of this study is the quantitative measurement of the CYT-c level changes in MS induced by ozone autohemotherap