68 research outputs found

    Long-term risk of mortality after acute kidney injury in patients with sepsis: a contemporary analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Acute kidney injury (AKI) is associated with increased short-term mortality of septic patients; however, the exact influence of AKI on long-term mortality in such patients has not yet been determined.</p> <p>Methods</p> <p>We retrospectively evaluated the impact of AKI, defined by the "Risk, Injury, Failure, Loss of kidney function, End-stage kidney disease" (RIFLE) classification based on creatinine criteria, on 2-year mortality in a cohort of 234 hospital surviving septic patients who had been hospitalized at the Infectious Disease Intensive Care Unit of our Hospital.</p> <p>Results</p> <p>Mean-follow-up was 21 ± 6.4 months. During this period, 32 patients (13.7%) died. At 6 months, 1 and 2 years of follow-up, the cumulative probability of death of patients with previous AKI was 8.3, 16.9 and 34.2%, respectively, as compared with 2.2, 6 and 8.9% in patients without previous AKI (log-rank, P < 0.0001). In the univariate analysis, age (hazard ratio 1.4, 95% CI 1.2-1.7, P < 0.0001), as well as pre-existing cardiovascular disease (hazard ratio 3.6, 95% CI 1.4-9.4, P = 0.009), illness severity as evaluated by nonrenal APACHE II (hazard ratio 1.3, 95% CI 1.1-1.6, P = 0.002), and previous AKI (hazard ratio 4.2, 95% CI 2.1-8.5, P < 0.0001) were associated with increased 2-year mortality, while gender, race, pre-existing hypertension, cirrhosis, HIV infection, neoplasm, and baseline glomerular filtration rate did not. In the multivariate analysis, however, only previous AKI (hazard ratio 3.2, 95% CI 1.6-6.5, P = 0.001) and age (hazard ratio 1.4, 95% CI 1.2-1.6, P < 0.0001) emerged as independent predictors of 2-year mortality.</p> <p>Conclusions</p> <p>Acute kidney injury had a negative impact on long-term mortality of patients with sepsis.</p

    Medio-Frontal and Anterior Temporal abnormalities in children with attention deficit hyperactivity disorder (ADHD) during an acoustic antisaccade task as revealed by electro-cortical source reconstruction

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Attention Deficit Hyperactivity Disorder (ADHD) is one of the most prevalent disorders in children and adolescence. Impulsivity is one of three core symptoms and likely associated with inhibition difficulties. To date the neural correlate of the antisaccade task, a test of response inhibition, has not been studied in children with (or without) ADHD.</p> <p>Methods</p> <p>Antisaccade responses to visual and acoustic cues were examined in nine unmedicated boys with ADHD (mean age 122.44 ± 20.81 months) and 14 healthy control children (mean age 115.64 ± 22.87 months, three girls) while an electroencephalogram (EEG) was recorded. Brain activity before saccade onset was reconstructed using a 23-source-montage.</p> <p>Results</p> <p>When cues were acoustic, children with ADHD had a higher source activity than control children in Medio-Frontal Cortex (MFC) between -230 and -120 ms and in the left-hemispheric Temporal Anterior Cortex (TAC) between -112 and 0 ms before saccade onset, despite both groups performing similarly behaviourally (antisaccades errors and saccade latency). When visual cues were used EEG-activity preceding antisaccades did not differ between groups.</p> <p>Conclusion</p> <p>Children with ADHD exhibit altered functioning of the TAC and MFC during an antisaccade task elicited by acoustic cues. Children with ADHD need more source activation to reach the same behavioural level as control children.</p

    Inter-domain Communication Mechanisms in an ABC Importer: A Molecular Dynamics Study of the MalFGK2E Complex

    Get PDF
    ATP-Binding Cassette transporters are ubiquitous membrane proteins that convert the energy from ATP-binding and hydrolysis into conformational changes of the transmembrane region to allow the translocation of substrates against their concentration gradient. Despite the large amount of structural and biochemical data available for this family, it is still not clear how the energy obtained from ATP hydrolysis in the ATPase domains is “transmitted” to the transmembrane domains. In this work, we focus our attention on the consequences of hydrolysis and inorganic phosphate exit in the maltose uptake system (MalFGK2E) from Escherichia coli. The prime goal is to identify and map the structural changes occurring during an ATP-hydrolytic cycle. For that, we use extensive molecular dynamics simulations to study three potential intermediate states (with 10 replicates each): an ATP-bound, an ADP plus inorganic phosphate-bound and an ADP-bound state. Our results show that the residues presenting major rearrangements are located in the A-loop, in the helical sub-domain, and in the “EAA motif” (especially in the “coupling helices” region). Additionally, in one of the simulations with ADP we were able to observe the opening of the NBD dimer accompanied by the dissociation of ADP from the ABC signature motif, but not from its corresponding P-loop motif. This work, together with several other MD studies, suggests a common communication mechanism both for importers and exporters, in which ATP-hydrolysis induces conformational changes in the helical sub-domain region, in turn transferred to the transmembrane domains via the “coupling helices”
    corecore