60 research outputs found

    Full-Stack, Real-System Quantum Computer Studies: Architectural Comparisons and Design Insights

    Full text link
    In recent years, Quantum Computing (QC) has progressed to the point where small working prototypes are available for use. Termed Noisy Intermediate-Scale Quantum (NISQ) computers, these prototypes are too small for large benchmarks or even for Quantum Error Correction, but they do have sufficient resources to run small benchmarks, particularly if compiled with optimizations to make use of scarce qubits and limited operation counts and coherence times. QC has not yet, however, settled on a particular preferred device implementation technology, and indeed different NISQ prototypes implement qubits with very different physical approaches and therefore widely-varying device and machine characteristics. Our work performs a full-stack, benchmark-driven hardware-software analysis of QC systems. We evaluate QC architectural possibilities, software-visible gates, and software optimizations to tackle fundamental design questions about gate set choices, communication topology, the factors affecting benchmark performance and compiler optimizations. In order to answer key cross-technology and cross-platform design questions, our work has built the first top-to-bottom toolflow to target different qubit device technologies, including superconducting and trapped ion qubits which are the current QC front-runners. We use our toolflow, TriQ, to conduct {\em real-system} measurements on 7 running QC prototypes from 3 different groups, IBM, Rigetti, and University of Maryland. From these real-system experiences at QC's hardware-software interface, we make observations about native and software-visible gates for different QC technologies, communication topologies, and the value of noise-aware compilation even on lower-noise platforms. This is the largest cross-platform real-system QC study performed thus far; its results have the potential to inform both QC device and compiler design going forward.Comment: Preprint of a publication in ISCA 201

    Realizing two-qubit gates through mode engineering on a trapped-ion quantum computer

    Full text link
    Two-qubit gates are a fundamental constituent of a quantum computer and typically its most challenging operation. In a trapped-ion quantum computer, this is typically implemented with laser beams which are modulated in amplitude, frequency, phase, or a combination of these. The required modulation becomes increasingly more complex as the quantum computer becomes larger, complicating the control hardware design. Here, we develop a simple method to essentially remove the pulse-modulation complexity by engineering the normal modes of the ion chain. We experimentally demonstrate the required mode engineering in a three ion chain. This opens up the possibility to trade off complexity between the design of the trapping fields and the optical control system, which will help scale the ion trap quantum computing platform.Comment: arXiv admin note: text overlap with arXiv:2104.13870 Updated funding informatio
    • …
    corecore