48 research outputs found

    Exploration on the Training Mode of Computer Professionals Based on the Concept of “New Engineering”

    Get PDF
    With the national industrial upgrading and technological innovation in recent years, the construction industry is leading in the direction of informatization, industrialization, intelligence and international integration, which puts forward new requirements for the current traditional mode of computer talent training. The innovation of talent training mode, the improvement of education and teaching, the improvement of education resources and so on have become the urgent problems of new engineering computer professional talent training Absolutely. This paper analyzes the current situation of "new engineering" talent demand and training, points out the shortcomings of the current computer talent training in the teaching concept, teaching mode, teachers and so on, and explores the new engineering computer talent training mode. And take the practice of Henan University School of civil engineering and architecture in the new engineering personnel training as an example, hope to have a certain reference significance for the new engineering computer professional personnel training. Keywords: new engineering; computer; interdisciplinary training; subject integration DOI: 10.7176/JEP/12-8-03 Publication date:March 31st 202

    Adaptive visual–tactile fusion recognition for robotic operation of multi-material system

    Get PDF
    The use of robots in various industries is evolving from mechanization to intelligence and precision. These systems often comprise parts made of different materials and thus require accurate and comprehensive target identification. While humans perceive the world through a highly diverse perceptual system and can rapidly identify deformable objects through vision and touch to prevent slipping or excessive deformation during grasping, robot recognition technology mainly relies on visual sensors, which lack critical information such as object material, leading to incomplete cognition. Therefore, multimodal information fusion is believed to be key to the development of robot recognition. Firstly, a method of converting tactile sequences to images is proposed to deal with the obstacles of information exchange between different modalities for vision and touch, which overcomes the problems of the noise and instability of tactile data. Subsequently, a visual-tactile fusion network framework based on an adaptive dropout algorithm is constructed, together with an optimal joint mechanism between visual information and tactile information established, to solve the problem of mutual exclusion or unbalanced fusion in traditional fusion methods. Finally, experiments show that the proposed method effectively improves robot recognition ability, and the classification accuracy is as high as 99.3%

    Inter-layer free cobalt-doped silica membranes for pervaporation of ammonia solutions

    Get PDF
    This study demonstrated the application of a new type of interlayer-free cobalt-doped silica membrane in treating ammonia solutions by pervaporation applied towards wastewater treatment. For enhanced hydrothermal stability, cobalt-doped silica (CoSi) membranes with increasing cobalt concentrations from 1 to 35 mol% were prepared and evaluated, namely CoSi-1, 5, 20 and 35. These membranes exhibited high water fluxes of 66 L m h for CoSi-1 and 15.5 L m h for CoSi-35 at 45 °C. The fluxes of the membranes decreased with increasing cobalt concentration; while the rejection to total nitrogen (TN, ammonia nitrogen) increased and hence allowed selective passage of water molecules. Enhanced thermostability was observed for the membranes, particularly CoSi-35 that exhibited TN rejection up to 99% at high temperature of 65 °C and highly alkaline environment (pH > 10). Also, the CoSi-35 membrane showed stable performance in treating ammonia present in industry wastewater by achieving stable TN and mineral rejections of 97% and 99%, respectively. Fouling was observed and confirmed by SEM morphological analysis and EDX elemental inspection. The results indicated the deposition of low solubility salts such as CaSO

    Concentration protile of etchant measured by microelectrode technique in the process of chemical micromachining

    Get PDF
    A carbon-disk microelectrode was used to investigate the surface concentration profile of etchant Br-2, which was electrogenerated on the Pt working electrode. The steady state reducing currents of Br-2 at different distances away from the Pt electode was measured. The concentration profile was estimated from the current-distance variation curves as a function of different sampling times. Experimentally determined concentration profiles are in good agreement with those estimated from the microetching results. The microelectrode technique has offered a good method to choose suitable etching solution for chemical micromachining

    A Novel Route to the Preparation of Carbon Supported Nickel Phosphide Catalysts by a Microwave Heating Process

    No full text
    A simple and efficient approach based on microwave heating process was developed to prepare carbon supported nickel phosphide. In this approach, red phosphorus was used as a P source and carbon acted as both the support and the microwave absorbent. The red phosphorus was homogeneously mixed with Ni-impregnated carbon by milling, and then subjected to microwave heating. After several minutes by microwave heating in Ar or H(2) atmosphere, the nickel phosphide, Ni(2)P, was produced on the carbon support, while the temperature of the sample bed was only 473 K or even lower during the reaction. It was also found that the preparation atmosphere had significant effects on the phosphide formation. Compared to the preparation in Ar, the nickel phosphides prepared in H2 were more readily formed and more highly dispersed on the carbon support due to PH(3) formation during the reduction process. The as-prepared nickel phosphide catalysts exhibited much higher activities in selective hydrogenation of 1,3-butadiene compared to that prepared by the conventional heating method, which was attributed to the high dispersion of Ni(2)P prepared by the microwave heating method

    Robust Simulations of Nanoscale Phase Change Memory: Dynamics and Retention

    No full text
    A robust simulation framework was developed for nanoscale phase change memory (PCM) cells. Starting from the reaction rate theory, the dynamic nucleation was simulated to capture the evolution of the cluster population. To accommodate the non-uniform critical sizes of nuclei due to the non-isothermal conditions during PCM cell programming, an improved crystallization model was proposed that goes beyond the classical nucleation and growth model. With the above, the incubation period in which the cluster distributions reached their equilibrium was captured beyond the capability of simulations with a steady-state nucleation rate. The implications of the developed simulation method are discussed regarding PCM fast SET programming and retention. This work provides the possibility for further improvement of PCM and integration with CMOS technology

    Numerical and Experimental Study on Large-Diameter FRP Cable Anchoring System with Dispersed Tendons

    No full text
    Based on a previously designed variable-stiffness load transfer component (LTC), a novel dispersed-tendon cable anchor system (CAS) was developed to increase the anchoring efficiency of large-diameter basalt-fiber-reinforced polymer (BFRP) cables. The static behaviors of the CAS are then numerically evaluated by a simplified three-dimensional finite-element (FE) model and implemented in a full-scale BFRP cable. The FE results indicated that the accuracy of the simplified dispersed-tendon model could be effectively ensured by dividing the revised compensation factor. The anchor behavior of the dispersed-tendon CAS was superior to that of the parallel-tendon CAS when the same cable was applied. The radial stress and tensile stress difference can be reduced by decreasing the tendon spacing. The testing and simulated results agreed well with the load–displacement relationship and axial displacement. All tendons fractured in the testing section, and the LTC suffered minimal damage. The ultimate force of the cable with 127 4-mm-diameter tendons was 2419 kN, and the corresponding anchoring efficiency was 93%. The cable axial tensile strain in the anchoring zone decreased linearly from the loading end to the free end. The cable shear stress concentration at the loading end can be avoided by employing a variable-stiffness anchoring method
    corecore