29 research outputs found

    The cold responsive mechanism of the paper mulberry: decreased photosynthesis capacity and increased starch accumulation

    Get PDF
    Representative gel images of proteins from the control and treatment. 2-DE was performed using 800 μg of total protein and 11 cm immobilized dry strips with linear pH gradients from 4 to 7. Gels were stained with CBB R-250. Arrow indicates proteins significantly changing in abundance in comparison with control (ANOVA, p < 0.05). Circle indicates proteins appeared after treatment. (TIFF 4732 kb

    Single-base methylome profiling of the giant kelp Saccharina japonica reveals significant differences in DNA methylation to microalgae and plants

    Get PDF
    Brown algae have convergently evolved plant-like body plans and reproductive cycles, which in plants are controlled by differential DNA methylation. This contribution provides the first single-base methylome profiles of haploid gametophytes and diploid sporophytes of a multicellular alga. Although only c. 1.4% of cytosines in Saccharina japonica were methylated mainly at CHH sites and characterized by 5-methylcytosine (5mC), there were significant differences between life-cycle stages. DNA methyltransferase 2 (DNMT2), known to efficiently catalyze tRNA methylation, is assumed to methylate the genome of S. japonica in the structural context of tRNAs as the genome does not encode any other DNA methyltransferases. Circular and long noncoding RNA genes were the most strongly methylated regulatory elements in S. japonica. Differential expression of genes was negatively correlated with DNA methylation with the highest methylation levels measured in both haploid gametophytes. Hypomethylated and highly expressed genes in diploid sporophytes included genes involved in morphogenesis and halogen metabolism. The data herein provide evidence that cytosine methylation, although occurring at a low level, is significantly contributing to the formation of different life-cycle stages, tissue differentiation and metabolism in brown algae

    Evolution and Expansion of the Prokaryote-Like Lipoxygenase Family in the Brown Alga Saccharina japonica

    No full text
    Lipoxygenase (LOX) plays important roles in fatty acid oxidation and lipid mediator biosynthesis. In this study, we give first insights into brown algal LOX evolution. Whole genome searches revealed four, three, and eleven LOXs in Ectocarpus siliculosus, Cladosiphon okamuranus, and Saccharina japonica, respectively. In phylogenetic analyses, LOXs from brown algae form a robust clade with those from prokaryotes, suggesting an ancestral origin and slow evolution. Brown algal LOXs were divided into two clades, C1 and C2 in a phylogenetic tree. Compared to the two species of Ectocarpales, LOX gene expansion occurred in the kelp S. japonica through tandem duplication and segmental duplication. Selection pressure analysis showed that LOX genes in brown algae have undergone strong purifying selection, while the selective constraint in the C2 clade was more relaxed than that in the C1 clade. Furthermore, within each clade, LOXs of S. japonica evolved under more relaxed selection constraints than E. siliculosus and C. okamuranus. Structural modeling showed that unlike LOXs of plants and animals, which contain a β barrel in the N-terminal part of the protein, LOXs in brown algae fold into a single domain. Analysis of previously published transcriptomic data showed that LOXs in E. siliculosus are responsive to hyposaline, hypersaline, oxidative, and copper stresses. Moreover, clear divergence of expression patterns was observed among different life stages, as well as between duplicate gene pairs. In E. siliculosus, all four LOXs are male-biased in immature gametophytes, and mature gametophytes showed significantly higher LOX mRNA levels than immature gametophytes and sporophytes. In S. japonica, however, our RNA-Seq data showed that most LOXs are highly expressed in sporophytes. Even the most recently duplicated gene pairs showed divergent expression patterns, suggesting that functional divergence has likely occurred since LOX genes duplicated, which potentially contributes to the production of various oxylipins in brown algae

    Transcriptional regulation of the paper mulberry under cold stress as revealed by a comprehensive analysis of transcription factors

    Get PDF
    Background: Several studies have focused on cold tolerance in multiple regulated levels. However, a genome-scale molecular analysis of the regulated network under the control of transcription factors (TFs) is still lacking, especially for trees. To comprehensively identify the TFs that regulate cold stress response in the paper mulberry and understand their regulatory interactions, transcriptomic data was used to assess changes in gene expression induced by exposure to cold. Results: Results indicated that 794 TFs, belonging to 47 families and comprising more than 59% of the total TFs of this plant, were involved in the cold stress response. They were clustered into three groups, namely early, intermediate and late responsive groups which contained 95, 550 and 149 TFs, respectively. Among of these differentially expressed TFs, one bHLH, two ERFs and three CAMTAs were considered to be the key TFs functioning in the primary signal transduction. After that, at the intermediate stage of cold stress, there were mainly two biological processes that were regulated by TFs, namely cold stress resistance (including 5 bHLH, 14 ERFs, one HSF, 4 MYBs, 3 NACs, 11 WRKYs and so on) and growth and development of lateral organ or apical meristem (including ARR-B, B3, 5 bHLHs, 2 C2H2, 4 CO-like, 2 ERF, 3 HD-ZIP, 3 YABBYs, G2-like, GATA, GRAS and TCP). In late responsive group, 3 ARR-B, C3H, 6 CO-like, 2 G2-like, 2 HSFs, 2 NACs and TCP. Most of them presented the up-regulated expression at 12 or 24 hours after cold stress implied their important roles for the new growth homeostasis under cold stress. Conclusions: Our study identified the key TFs that function in the regulatory cascades mediating the activation of downstream genes during cold tress tolerance in the paper mulberry. Based on the analysis, we found that the AP2/ERF, bHLH, MYB, NAC and WRKY families might play the central and significant roles during cold stress response in the paper mulberry just as in other species. Meanwhile, many other TF families previously reported as involving in regulation of growth and development, including ARF, DBB, G2-like, GRF, GRAS, LBD, WOX and YAABY exhibited their important potential function in growth regulation under cold stress

    <i>De Novo</i> Assembly of Expressed Transcripts and Global Transcriptomic Analysis from Seedlings of the Paper Mulberry (<i>Broussonetia kazinoki</i> x <i>Broussonetia papyifera</i>)

    No full text
    <div><p>The paper mulberry is one of the multifunctional tree species in agroforestry systems and is also commonly utilized in traditional medicine in China and other Asian countries. However, little is known about its molecular genetics, which hinders research on and exploitation of this valuable resource. To discern the correlation between gene expression and the essential properties of the paper mulberry, we performed a transcriptomics analysis, assembling a total of 37,725 unigenes from 54,638,676 reads generated by RNA-seq. Among these, 22,692 unigenes showed greater than 60% similarity with genes from other species. The lengths of 13,566 annotated unigenes were longer than 1,000 bp. Functional clustering analysis with COG (Cluster of Orthologous Groups) revealed that 17,184 unigenes are primarily involved in transcription, translation, signal transduction, carbohydrate metabolism, secondary metabolism, and energy metabolism. GO (Gene Ontology) annotation suggests enrichment of genes encoding antioxidant activity, transporter activity, biosynthesis, metabolism and stress response, with a total of 30,659 unigenes falling in these categories. KEGG (Kyoto Encyclopedia of Genes and Genomes) metabolic pathway analysis showed that 7,199 unigenes are associated with 119 metabolic pathways. In addition to the basic metabolism, these genes are enriched for plant pathogen interaction, flavonoid metabolism and other secondary metabolic processes. Furthermore, differences in the transcriptomes of leaf, stem and root tissues were analyzed and 7,233 specifically expressed unigenes were identified. This global expression analysis provided novel insights about the molecular mechanisms of the biosynthesis of flavonoid, lignin and cellulose, as well as on the response to biotic and abiotic stresses including the remediation of contaminated soil by the paper mulberry.</p></div
    corecore