51 research outputs found

    Clinical features of COVID-19-related optic neuritis: a retrospective study

    Get PDF
    ObjectiveThis retrospective study aimed to investigate the clinical features of optic neuritis associated with COVID-19 (COVID-19 ON), comparing them with neuromyelitis optica-associated optic neuritis (NMO-ON), myelin oligodendrocyte glycoprotein-associated optic neuritis (MOG-ON), and antibody-negative optic neuritis (antibody-negative ON).MethodsData from 117 patients (145 eyes) with optic neuritis at the Shantou International Eye Center (March 2020–June 2023) were categorized into four groups based on etiology: Group 1 (neuromyelitis optica-related optic neuritis, NMO-ON), Group 2 (myelin oligodendrocyte glycoprotein optic neuritis, MOG-ON), Group 3 (antibody-negative optic neuritis, antibody-negative ON), and Group 4 (optic neuritis associated with COVID-19, COVID-19 ON). Characteristics of T2 and enhancement in orbital magnetic resonance imaging (MRI) were assessed. Best-corrected visual acuity (BCVA) was compared before treatment, at a short-term follow-up (14 days), and at the last follow-up after treatment.ResultsThe COVID-19-associated optic neuritis (COVID-19 ON) group exhibited 100% bilateral involvement, significantly surpassing other groups (P < 0.001). Optic disk edema was observed in 100% of COVID-19 ON cases, markedly differing from neuromyelitis optica-related optic neuritis (NMO-ON) (P = 0.023). Orbital magnetic resonance imaging (MRI) revealed distinctive long-segment lesions without intracranial involvement in T1-enhanced sequences for the COVID-19 ON group compared to the other three groups (P < 0.001). Discrepancies in optic nerve sheath involvement were noted between the COVID-19 ON group and both NMO-ON and antibody-negative optic neuritis (antibody-negative ON) groups (P = 0.028). Before treatment, no significant difference in best-corrected visual acuity (BCVA) existed between the COVID-19 ON group and other groups. At the 14-day follow-up, BCVA in the COVID-19 ON group outperformed the NMO-ON (P < 0.001) and antibody-negative ON (P = 0.028) groups, with no significant difference observed compared to the myelin oligodendrocyte glycoprotein optic neuritis (MOG-ON) group. At the last follow-up after treatment, BCVA in the COVID-19 ON group significantly differed from the NMO-ON group (P < 0.001).ConclusionOptic neuritis associated with COVID-19 (COVID-19 ON) predominantly presents with bilateral onset and optic disk edema. Orbital magnetic resonance imaging (MRI) demonstrates that COVID-19 ON presents as long-segment enhancement without the involvement of the intracranial segment of the optic nerve in T1-enhanced images. Glucocorticoid therapy showed positive outcomes

    Clinical-radiomics nomogram using contrast-enhanced CT to predict histological grade and survival in pancreatic ductal adenocarcinoma

    Get PDF
    ObjectivesTumor grading is important for prognosis of pancreatic ductal adenocarcinoma (PDAC). In this study, we developed preoperative clinical-radiomics nomograms using features from contrast-enhanced CT (CECT), to discriminate high-grade and low-grade PDAC and predict overall survival (OS).MethodsIn this single-center, retrospective study conducted from February 2014 to April 2021, consecutive PDAC patients who underwent CECT and had pathologically identified grading were randomized to training (n=200) and test (n=84) cohorts for development of model to predict histological grade based on radiomics scores from CECT (HGrad). Another 42 patients were used as external validation cohort of HGrad. A nomogram (HGnom) was constructed using radiomics score, CA12-5 and smoking to predict histological grade. A second nomogram (Pnom) was constructed using radiomics score, CA12-5, TNM, adjuvant treatment, resection margin and microvascular invasion to predict OS in radical resection patients (217 of 284).ResultsAmong 326 patients, 122 were high-grade (120 poorly differentiated and 2 undifferentiated). The HGrad yielded AUCs of 0.75 (95% CI: 0.64, 0.85) and 0.76 (95% CI: 0.60, 0.91) in test and validation cohorts. The HGnom achieved AUCs of 0.77 (95% CI: 0.66, 0.87), and the predicted grades calibrated well with actual grades (P=.13). OS was different between the grades predicted by radiomics scores (P=.01). The integrated AUC of the Pnom for predicting OS was 0.80 (95% CI: 0.75, 0.88).ConclusionCompared with the HGrad using features from CECT, the HGnom demonstrated higher performance for predicting histological grade. The Pnom helped identify patients with high survival outcome in pancreatic ductal adenocarcinoma

    A review of thermal management for Li-ion batteries: Prospects, challenges, and issues

    Get PDF
    Li-ion batteries are essential component in the current generation of electric vehicles. However, further pushing electric vehicles are concerned with battery life. Since the temperature dictates battery lifetime, it is crucial to manage the heat and keep the temperature at an acceptable range within the battery pack. The benefit of a cooling system is to prevent the premature degradation of battery life. This paper provides a critical review of the so far thermal management strategy dealing with temperature within the cells, module, and packs. This paper reviews the advantages and disadvantages of state of the art (traditional) thermal cooling system. In this paper, we have reviewed separately cell, module, and pack level cooling system. The battery thermal modeling techniques and cooling system design challenges are also reviewed. This paper also reviews the future cooling system for future vehicles with rising fast charge rate and these techniques can improve the limitations of the traditional cooling system. This paper also suggests the best suitable and economically viable technology for the upcoming EVs issues

    Multi-dimensional epidemiology and informatics data on COVID-19 wave at the end of zero COVID policy in China

    Get PDF
    BackgroundChina exited strict Zero-COVID policy with a surge in Omicron variant infections in December 2022. Given China’s pandemic policy and population immunity, employing Baidu Index (BDI) to analyze the evolving disease landscape and estimate the nationwide pneumonia hospitalizations in the post Zero COVID period, validated by hospital data, holds informative potential for future outbreaks.MethodsRetrospective observational analyses were conducted at the conclusion of the Zero-COVID policy, integrating internet search data alongside offline records. Methodologies employed were multidimensional, encompassing lagged Spearman correlation analysis, growth rate assessments, independent sample T-tests, Granger causality examinations, and Bayesian structural time series (BSTS) models for comprehensive data scrutiny.ResultsVarious diseases exhibited a notable upsurge in the BDI after the policy change, consistent with the broader trajectory of the COVID-19 pandemic. Robust connections emerged between COVID-19 and diverse health conditions, predominantly impacting the respiratory, circulatory, ophthalmological, and neurological domains. Notably, 34 diseases displayed a relatively high correlation (r > 0.5) with COVID-19. Among these, 12 exhibited a growth rate exceeding 50% post-policy transition, with myocarditis escalating by 1,708% and pneumonia by 1,332%. In these 34 diseases, causal relationships have been confirmed for 23 of them, while 28 garnered validation from hospital-based evidence. Notably, 19 diseases obtained concurrent validation from both Granger causality and hospital-based data. Finally, the BSTS models approximated approximately 4,332,655 inpatients diagnosed with pneumonia nationwide during the 2 months subsequent to the policy relaxation.ConclusionThis investigation elucidated substantial associations between COVID-19 and respiratory, circulatory, ophthalmological, and neurological disorders. The outcomes from comprehensive multi-dimensional cross-over studies notably augmented the robustness of our comprehension of COVID-19’s disease spectrum, advocating for the prospective utility of internet-derived data. Our research highlights the potential of Internet behavior in predicting pandemic-related syndromes, emphasizing its importance for public health strategies, resource allocation, and preparedness for future outbreaks

    The Role of Gut Microbiota in Neuromyelitis Optica Spectrum Disorder

    No full text
    Neuromyelitis optica spectrum disorder (NMOSD) is a rare, disabling inflammatory disease of the central nervous system (CNS). Aquaporin-4 (AQP4)-specific T cells play a key role in the pathogenesis of NMOSD. In addition to immune factors, T cells recognizing the AQP4 epitope showed cross-reactivity with homologous peptide sequences in C. perfringens proteins, suggesting that the gut microbiota plays an integral role in the pathogenicity of NMOSD. In this review, we summarize research on the involvement of the gut microbiota in the pathophysiology of NMOSD and its possible pathogenic mechanisms. Among them, Clostridium perfringens and Streptococcus have been confirmed to play a role by multiple studies. Based on this evidence, metabolites produced by gut microbes, such as short-chain fatty acids (SCFAs), tryptophan (Trp), and bile acid (BA) metabolites, have also been found to affect immune cell metabolism. Therefore, the role of the gut microbiota in the pathophysiology of NMOSD is very important. Alterations in the composition of the gut microbiota can lead to pathological changes and alter the formation of microbiota-derived components and metabolites. It can serve as a biomarker for disease onset and progression and as a potential disease-modifying therapy

    Growth hormone-releasing hormone receptor signaling in experimental ocular inflammation and neuroprotection

    No full text
    Both inflammation and anti-inflammation are involved in the protection of retinal cells. Antagonists of the hypothalamic growth hormone-releasing hormone receptor (GHRHR) have been shown to possess potent anti-inflammatory properties in experimental disease models of various organs, some with systemic complications. Such effects are also found in ocular inflammatory and neurologic injury studies. In experimental models of mice and rats, both growth hormone-releasing hormone receptor agonists and antagonists may alleviate death of ocular neural cells under certain experimental conditions. This review explores the properties of growth hormone-releasing hormone receptor agonists and antagonists that lead to its protection against inflammatory responses induced by extrinsic agents or neurologic injures in ocular animal models

    Rationale and Design of RNAFH Study: Effect of Rosuvastatin (10 mg/d) on Nonalcoholic Fatty Liver in Metabolic Syndrome Patients without Overt Diabetes Evaluated by 1H-Magnetic Resonance Spectroscopy

    Get PDF
    Objective. The RNAFH study (effect of rosuvastatin on nonalcoholic fatty liver disease in metabolic syndrome patients without overt diabetes evaluated by 1H-MRS) is a prospective randomized, single-center, open-label trail designed to assess the effect of rosuvastatin on the intrahepatocellular lipid (IHCL) level of nonalcoholic fatty liver disease (NAFLD). Methods. 40 NAFLD patients meeting inclusion and exclusion criteria with metabolic syndrome (MS) but without overt diabetes mellitus will be included. Patients will be randomized to 52-week treatment with either rosuvastatin (10 mg/d) or blank control. The primary end point is IHCL evaluated by 1H-MRS, which was considered to be the most accurate noninvasive method for the evaluation of NAFLD. Secondary end points include homeostasis model assessment of insulin resistance (HOMA-IR) index on behalf of insulin resistance level and lipid parameters. Safety indicators will be monitored such as liver function, renal function, muscle stability, and glucose metabolism. The aims of the present study are noteworthy in respect that (1) IHCL is a quantitative indicator for evaluating the degree of fatty liver disease and 1H-MRS is a noninvasive technique to provide this specific index precisely, (2) meanwhile the HOMA-IR index and lipid parameters will be monitored, and (3) the safety of rosuvastatin treatment for 52 weeks will be evaluated including glucose metabolism, muscle stability, liver function, and renal function

    Retinal transcriptome of neonatal mice after optic nerve injury.

    No full text
    BackgroundThe axonal growth capacity of retinal ganglion cells decreases dramatically within the first day of birth, and the axonal regeneration after injury in mature mammals is very limited. Here, this study aimed to delineate the transcriptomic changes associated with altered axonal growth capacity and to identify the key genes associated with axonal regeneration by the RNA sequencing (RNA-Seq) analysis.MethodsThe whole retinas from the mice of embryonic day (E) 20, postnatal day (P) 1 and P3 were collected at 6 hours after optic nerve crush (ONC). Differentially expressed genes (DEGs) for ONC or ages were identified by the RNA-Seq analysis. K-means analysis was conducted for the clustering of DEGs based on expression patterns. Enrichment of functions and signaling pathways analysis were performed based on Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) database, and Gene Set Enrichment analysis (GSEA). Quantitative real time polymerase chain reaction (qRT-PCR) was used to validate the DEGs selected from the RNA-Seq analysis.ResultsIn total, 5,408 DEGs were identified for ages, and 2,639 DEGs in neonatal mouse retina after ONC. K-means analysis revealed 7 clusters in age-DEGs and 11 clusters in ONC-DEGs. The GO, KEGG and GSEA pathway analyses identified significantly enrichment of DEGs in the visual perception and phototransduction for the age effect, and the break repair, neuron projection guidance, and immune system pathway for the ONC. PPI analysis identified hub genes in the axon-related gene cluster. The expressions of Mlc1, Zfp296, Atoh7, Ecel1, Creb5, Fosb, and Lcn2, thought to be involved in RGC death and axonal growth were validated by qRT-PCR.ConclusionsThis study, for the first time, delineated the gene expression changes following ON injury in embryonic and neonatal mice, providing a new resource of age- and injury-driven data on axonal growth capacity
    corecore