1,910 research outputs found

    Adherence to the Planetary Health Diet Index and Correlation with Nutrients of Public Health Concern: An analysis of NHANES 2003-2018:Planetary Health Diet Index: Trends in the US

    Get PDF
    Background: The Planetary Health Diet Index (PHDI) is a novel measure adapted to quantify alignment with the dietary evidence presented by the EAT-Lancet Commission on Food, Planet Health.Objectives: To examine how population-level health and sustainability of diet as measured by the PHDI changed from 2003-2018, and to assess how PHDI correlated with inadequacy for nutrients of public health concern (iron, calcium, potassium, and fiber) in the US.Methods: We estimated survey-weighted trends in PHDI scores and median intake of PHDI components in a nationally-representative sample of 33,859 adults aged 20+ years from eight cycles (2003–2018) of the National Health and Nutrition Examination Survey with two days of dietary recall data. We used the NCI method to examine how PHDI correlated with inadequate intake of iron, calcium, potassium, and fiber.Results: Out of a theoretical range of 0 to 140, median PHDI value increased by 4.2 points over the study period, from 62.7 (95% CI: 62.0, 63.4) points in 2003-2004 to 66.9 (66.2, 67.7) points in 2017-2018 (ptrend<0.001), although most of this change occurred before 2011-2012 and plateaued thereafter. For adequacy components that are encouraged for consumption, non starchy vegetable intake significantly decreased over time, while whole grains, nuts and seeds, and unsaturated oils increased. For moderation components with recommended limits for consumption, poultry and egg intake increased, but red and processed meat, added sugars, saturated fats, and starchy vegetables decreased over time. Higher PHDI values were associated with lower probability of iron, fiber, and potassium inadequacy.Conclusions: Although there have been positive changes over the past 20 years, there is substantial room for improving the health and sustainability of the US diet. Shifting diets towards EAT-Lancet recommendations would improve nutrient adequacy for iron, fiber and potassium. Policy action is needed to support healthier, more sustainable diets in the US and globally

    Dietary quality and cardiometabolic indicators in the USA: A comparison of the Planetary Health Diet Index, Healthy Eating Index-2015, and Dietary Approaches to Stop Hypertension

    Get PDF
    Background. The Planetary Health Diet Index (PHDI) measures adherence to the sustainable dietary guidance proposed by the EAT-Lancet Commission on Food, Planet, Health. To justify incorporating sustainable dietary guidance such as the PHDI in the US, the index needs to be compared to health-focused dietary recommendations already in use. The objectives of this study were to compare the how the Planetary Health Diet Index (PHDI), the Healthy Eating Index34 2015 (HEI-2015) and Dietary Approaches to Stop Hypertension (DASH) relate to cardiometabolic risk factors.Methods and Findings. Participants from the National Health and Nutrition Examination Survey (2015-2018) were assigned a score for each dietary index. We examined disparities in dietary quality for each index. We used linear and logistic regression to assess the association of standardized dietary index values with waist circumference, blood pressure, HDL-C, fasting plasma glucose (FPG) and triglycerides (TG). We also dichotomized the cardiometabolic indicators using the cutoffs for the Metabolic Syndrome and used logistic regression to assess the relationship of the standardized dietary index values with binary cardiometabolic risk factors. We observed diet quality disparities for populations that were Black, Hispanic, low-income, a low-education. Higher diet quality was associated with improved continuous and binary cardiometabolic risk factors, although higher PHDI was not associated with high FPG and was the only index associated with lower TG. These patterns remained consistent in sensitivity analyses.Conclusions. Sustainability-focused dietary recommendations such as the PHDI have similar cross-sectional associations with cardiometabolic risk as HEI-2015 or DASH. Health-focused dietary guidelines such as the forthcoming 2025-2030 Dietary Guidelines for Americans can consider the environmental impact of diet and still promote cardiometabolic health

    Dietary Quality and Dietary Greenhouse Gas Emissions in the USA: A Comparison of the Planetary Health Diet Index, Healthy Eating Index-2015, and Dietary Approaches to Stop Hypertension

    Get PDF
    BackgroundThe Planetary Health Diet Index (PHDI) measures adherence to the dietary pattern presented by the EAT-Lancet Commission, which aligns health and sustainability targets. There is a need to understand how PHDI scores correlate with dietary greenhouse gas emissions (GHGE) and how this differs from the carbon footprints of scores on established dietary recommendations. The objectives of this study were to compare how the PHDI, Healthy Eating Index-2015 (HEI-2015) and Dietary Approaches to Stop Hypertension (DASH) relate to (a) dietary GHGE and (b) to examine the influence of PHDI food components on dietary GHGE.MethodsWe used life cycle assessment data from the Database of Food Recall Impacts on the Environment for Nutrition and Dietary Studies to calculate the mean dietary GHGE of 8,128 adult participants in the 2015–2016 and 2017–2018 cycles of the National Health and Nutrition Examination Survey (NHANES). Poisson regression was used to estimate the association of (a) quintiles of diet score and (b) standardized dietary index Z-scores with dietary GHGE for PHDI, HEI-2015, and DASH scores. In secondary analyses, we used Poisson regression to assess the influence of individual PHDI component scores on dietary GHGE.ResultsWe found that higher dietary quality on all three indices was correlated with lower dietary GHGE. The magnitude of the dietary quality-dietary GHGE relationship was larger for PHDI [-0.4, 95% CI (-0.5, -0.3) kg CO2 equivalents per one standard deviation change] and for DASH [-0.5, (-0.4, -0.6) kg CO2-equivalents] than for HEI-2015 [-0.2, (-0.2, -0.3) kg CO2-equivalents]. When examining PHDI component scores, we found that diet-related GHGE were driven largely by red and processed meat intake.ConclusionsImproved dietary quality has the potential to lower the emissions impacts of US diets. Future efforts to promote healthy, sustainable diets could apply the recommendations of the established DASH guidelines as well as the new guidance provided by the PHDI to increase their environmental benefits

    Television viewing and using screens while eating: Associations with dietary intake in children and adolescents

    Get PDF
    Screen time has been associated with overweight and obesity, as well as with poorer dietary quality. However, the reasons explaining these associations are not well understood. The objectives of this cross-sectional study were [1] to determine the extent of overall TV viewing as well as using screens while eating (e.g., watching TV or using a tablet), [2] to compare food and nutrient consumption of on-versus off-screen eating occasions, and [3] to determine whether TV viewing and using screens while eating is associated with overall dietary intake. Participants were from the Food Environment Chilean Cohort (n = 938, 4–6 y) and the Growth and Obesity Cohort Study (n = 752, 12–14 y). Dietary data was collected via one 24-h food recall. For each eating occasion, activity performed during consumption (e.g., watching TV, playing sports) was reported. Weekly TV viewing time was collected via an additional survey instrument. Analyses included multivariable linear and logistic regression. Post-hoc pairwise comparisons examined differences in outcomes by tertiles. Our sample reported a median of 9–13.5 weekly hours of TV viewing and 87.5% reported consuming at least one meal or snack per day while using screens. The median kilocalories contributed by eating during screen use was 387 kcal/d in children and 848 kcal/day in adolescents, which represents 34.7% and 42.3% of daily energy intake, respectively. There were no consistent differences when comparing eating occasions consumed on-screen versus off-screen. Higher weekly TV viewing was associated with elements of a less healthy diet including more sweets and desserts in children, and more sugar sweetened beverages in adolescents. A large percentage of Chilean children and adolescents’ daily energy is consumed while using screens. In depth, longitudinal work is needed to understand how screen time eating affects diet quality and nutritional status

    Biomass Production of Herbaceous Energy Crops in the United States: Field Trial Results and Yield Potential Maps from the Multiyear Regional Feedstock Partnership

    Get PDF
    Current knowledge of yield potential and best agronomic management practices for perennial bioenergy grasses is primarily derived from small‐scale and short‐term studies, yet these studies inform policy at the national scale. In an effort to learn more about how bioenergy grasses perform across multiple locations and years, the U.S. Department of Energy (US DOE)/Sun Grant Initiative Regional Feedstock Partnership was initiated in 2008. The objectives of the Feedstock Partnership were to (1) provide a wide range of information for feedstock selection (species choice) and management practice options for a variety of regions and (2) develop national maps of potential feedstock yield for each of the herbaceous species evaluated. The Feedstock Partnership expands our previous understanding of the bioenergy potential of switchgrass, Miscanthus, sorghum, energycane, and prairie mixtures on Conservation Reserve Program land by conducting long‐term, replicated trials of each species at diverse environments in the U.S. Trials were initiated between 2008 and 2010 and completed between 2012 and 2015 depending on species. Field‐scale plots were utilized for switchgrass and Conservation Reserve Program trials to use traditional agricultural machinery. This is important as we know that the smaller scale studies often overestimated yield potential of some of these species. Insufficient vegetative propagules of energycane and Miscanthus prohibited farm‐scale trials of these species. The Feedstock Partnership studies also confirmed that environmental differences across years and across sites had a large impact on biomass production. Nitrogen application had variable effects across feedstocks, but some nitrogen fertilizer generally had a positive effect. National yield potential maps were developed using PRISM‐ELM for each species in the Feedstock Partnership. This manuscript, with the accompanying supplemental data, will be useful in making decisions about feedstock selection as well as agronomic practices across a wide region of the country

    Identifying invasive species threats, pathways, and impacts to improve biosecurity

    Get PDF
    Managing invasive species with prevention and early-detection strategies can avert severe ecological and economic impacts. Horizon scanning, an evidence-based process combining risk screening and consensus building to identify threats, has become a valuable tool for prioritizing invasive species management and prevention. We assembled a working group of experts from academic, government, and nonprofit agencies and organizations, and conducted a multi-taxa horizon scan for Florida, USA, the first of its kind in North America. Our primary objectives were to identify high-risk species and their introduction pathways, to detail the magnitude and mechanism of potential impacts, and, more broadly, to demonstrate the utility of horizon scanning. As a means to facilitate future horizon scans, we document the process used to generate the list of taxa for screening. We evaluated 460 taxa for their potential to arrive, establish, and cause negative ecological and socioeconomic impacts, and identified 40 potential invaders, including alewife, zebra mussel, crab-eating macaque, and red swamp crayfish. Vertebrates and aquatic invertebrates posed the greatest invasion threat, over half of the high-risk taxa were omnivores, and there was high confidence in the scoring of high-risk taxa. Common arrival pathways were ballast water, biofouling of vessels, and escape from the pet/aquarium/horticulture trade. Competition, predation, and damage to agriculture/forestry/aquaculture were common impact mechanisms. We recommend full risk analysis for the high-risk taxa; increased surveillance at Florida's ports, state borders, and high-risk pathways; and periodic review and revision of the list. Few horizon scans detail the comprehensive methodology (including list-building), certainty estimates for all scoring categories and the final score, detailed pathways, and the magnitude and mechanism of impact. Providing this information can further inform prevention efforts and can be efficiently replicated in other regions. Moreover, harmonizing methodology can facilitate data sharing and enhance interpretation of results for stakeholders and the general public.</p

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy

    Biomass production of herbaceous energy crops in the United States: field trial results and yield potential maps from the multiyear regional feedstock partnership

    Get PDF
    Current knowledge of yield potential and best agronomic management practices for perennial bioenergy grasses is primarily derived from small-scale and short-term studies, yet these studies inform policy at the national scale. In an effort to learn more about how bioenergy grasses perform across multiple locations and years, the U.S. Department of Energy (US DOE)/Sun Grant Initiative Regional Feedstock Partnership was initiated in 2008. The objectives of the Feedstock Partnership were to (1) provide a wide range of information for feedstock selection (species choice) and management practice options for a variety of regions and (2) develop national maps of potential feedstock yield for each of the herbaceous species evaluated. The Feedstock Partnership expands our previous understanding of the bioenergy potential of switchgrass, Miscanthus, sorghum, energycane, and prairie mixtures on Conservation Reserve Program land by conducting long-term, replicated trials of each species at diverse environments in the U.S. Trials were initiated between 2008 and 2010 and completed between 2012 and 2015 depending on species. Field-scale plots were utilized for switchgrass and Conservation Reserve Program trials to use traditional agricultural machinery. This is important as we know that the smaller scale studies often overestimated yield potential of some of these species. Insufficient vegetative propagules of energycane and Miscanthus prohibited farm-scale trials of these species. The Feedstock Partnership studies also confirmed that environmental differences across years and across sites had a large impact on biomass production. Nitrogen application had variable effects across feedstocks, but some nitrogen fertilizer generally had a positive effect. National yield potential maps were developed using PRISM-ELM for each species in the Feedstock Partnership. This manuscript, with the accompanying supplemental data, will be useful in making decisions about feedstock selection as well as agronomic practices across a wide region of the country

    Epistatic Relationships between sarA and agr in Staphylococcus aureus Biofilm Formation

    Get PDF
    Background: The accessory gene regulator (agr) and staphylococcal accessory regulator (sarA) play opposing roles in Staphylococcus aureus biofilm formation. There is mounting evidence to suggest that these opposing roles are therapeutically relevant in that mutation of agr results in increased biofilm formation and decreased antibiotic susceptibility while mutation of sarA has the opposite effect. To the extent that induction of agr or inhibition of sarA could potentially be used to limit biofilm formation, this makes it important to understand the epistatic relationships between these two loci. Methodology/Principal Findings: We generated isogenic sarA and agr mutants in clinical isolates of S. aureus and assessed the relative impact on biofilm formation. Mutation of agr resulted in an increased capacity to forma biofilmin the 8325-4 laboratory strain RN6390 but had little impact in clinical isolates S. aureus. In contrast, mutation of sarA resulted in a reduced capacity to form a biofilm in all clinical isolates irrespective of the functional status of agr. This suggests that the regulatory role of sarA in biofilm formation is independent of the interaction between sarA and agr and that sarA is epistatic to agr in this context. This was confirmed by demonstrating that restoration of sarA function restored the ability to form a biofilm even in the corresponding agr mutants. Mutation of sarA in clinical isolates also resulted in increased production of extracellular proteases and extracellular nucleases, both of which contributed to the biofilm-deficient phenotype of sarA mutants. However, studies comparing different strains with and without proteases inhibitors and/or mutation of the nuclease genes demonstrated that the agr-independent, sarA-mediated repression of extracellular proteases plays a primary role in this regard. Conclusions and Significance: The results we report suggest that inhibitors of sarA-mediated regulation could be used to limit biofilm formation in S. aureus and that the efficacy of such inhibitors would not be limited by spontaneous mutation of agr in the human host

    Physiological Correlates of Volunteering

    Get PDF
    We review research on physiological correlates of volunteering, a neglected but promising research field. Some of these correlates seem to be causal factors influencing volunteering. Volunteers tend to have better physical health, both self-reported and expert-assessed, better mental health, and perform better on cognitive tasks. Research thus far has rarely examined neurological, neurochemical, hormonal, and genetic correlates of volunteering to any significant extent, especially controlling for other factors as potential confounds. Evolutionary theory and behavioral genetic research suggest the importance of such physiological factors in humans. Basically, many aspects of social relationships and social activities have effects on health (e.g., Newman and Roberts 2013; Uchino 2004), as the widely used biopsychosocial (BPS) model suggests (Institute of Medicine 2001). Studies of formal volunteering (FV), charitable giving, and altruistic behavior suggest that physiological characteristics are related to volunteering, including specific genes (such as oxytocin receptor [OXTR] genes, Arginine vasopressin receptor [AVPR] genes, dopamine D4 receptor [DRD4] genes, and 5-HTTLPR). We recommend that future research on physiological factors be extended to non-Western populations, focusing specifically on volunteering, and differentiating between different forms and types of volunteering and civic participation
    corecore