5,632 research outputs found

    QED effects on individual atomic orbital energies

    Get PDF
    Several issues, concerning QED corrections, that are important in precise atomic calculations are presented. The leading QED corrections, self-energy and vacuum polarization, to the orbital energy for selected atoms with 30 ≤ Z ≤ 118 have been calculated. The sum of QED and Breit contributions to the orbital energy is analyzed. It has been found that for ns subshells the Breit and QED contributions are of comparative size, but for np and nd subshells the Breit contribution takes a major part of the QED+Breit sum. It has also, been found that the Breit to leading QED contributions ratio for ns subshells is almost independent of Z. The Z-dependence of QED and Breit+QED contributions per subshell is shown. The fitting coefficients may be used to estimate QED effects on inner molecular orbitals. We present results of our calculations for QED contributions to orbital energy of valence ns-subshell for group 1 and 11 atoms and discuss about the reliability of these numbers by comparing them with experimental first ionization potential data.Fil: Koziol, Karol. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; ArgentinaFil: Aucar, Gustavo Adolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; Argentin

    Coupled tensorial form for atomic relativistic two-particle operator given in second quantization representation

    Full text link
    General formulas of the two-electron operator representing either atomic or effective interactions are given in a coupled tensorial form in relativistic approximation. The alternatives of using uncoupled, coupled and antisymmetric two-electron wave functions in constructing coupled tensorial form of the operator are studied. The second quantization technique is used. The considered operator acts in the space of states of open-subshell atoms

    An efficient approach for spin-angular integrations in atomic structure calculations

    Full text link
    A general method is described for finding algebraic expressions for matrix elements of any one- and two-particle operator for an arbitrary number of subshells in an atomic configuration, requiring neither coefficients of fractional parentage nor unit tensors. It is based on the combination of second quantization in the coupled tensorial form, angular momentum theory in three spaces (orbital, spin and quasispin), and a generalized graphical technique. The latter allows us to calculate graphically the irreducible tensorial products of the second quantization operators and their commutators, and to formulate additional rules for operations with diagrams. The additional rules allow us to find graphically the normal form of the complicated tensorial products of the operators. All matrix elements (diagonal and non-diagonal with respect to configurations) differ only by the values of the projections of the quasispin momenta of separate shells and are expressed in terms of completely reduced matrix elements (in all three spaces) of the second quantization operators. As a result, it allows us to use standard quantities uniformly for both diagona and off-diagonal matrix elements

    On the secondly quantized theory of many-electron atom

    Full text link
    Traditional theory of many-electron atoms and ions is based on the coefficients of fractional parentage and matrix elements of tensorial operators, composed of unit tensors. Then the calculation of spin-angular coefficients of radial integrals appearing in the expressions of matrix elements of arbitrary physical operators of atomic quantities has two main disadvantages: (i) The numerical codes for the calculation of spin-angular coefficients are usually very time-consuming; (ii) f-shells are often omitted from programs for matrix element calculation since the tables for their coefficients of fractional parentage are very extensive. The authors suppose that a series of difficulties persisting in the traditional approach to the calculation of spin-angular parts of matrix elements could be avoided by using this secondly quantized methodology, based on angular momentum theory, on the concept of the irreducible tensorial sets, on a generalized graphical method, on quasispin and on the reduced coefficients of fractional parentage

    Many-body-QED perturbation theory: Connection to the Bethe-Salpeter equation

    Full text link
    The connection between many-body theory (MBPT)--in perturbative and non-perturbative form--and quantum-electrodynamics (QED) is reviewed for systems of two fermions in an external field. The treatment is mainly based upon the recently developed covariant-evolution-operator method for QED calculations [Lindgren et al. Phys. Rep. 389, 161 (2004)], which has a structure quite akin to that of many-body perturbation theory. At the same time this procedure is closely connected to the S-matrix and the Green's-function formalisms and can therefore serve as a bridge between various approaches. It is demonstrated that the MBPT-QED scheme, when carried to all orders, leads to a Schroedinger-like equation, equivalent to the Bethe-Salpeter (BS) equation. A Bloch equation in commutator form that can be used for an "extended" or quasi-degenerate model space is derived. It has the same relation to the BS equation as has the standard Bloch equation to the ordinary Schroedinger equation and can be used to generate a perturbation expansion compatible with the BS equation also for a quasi-degenerate model space.Comment: Submitted to Canadian J of Physic

    Exploring Biorthonormal Transformations of Pair-Correlation Functions in Atomic Structure Variational Calculations

    Full text link
    Multiconfiguration expansions frequently target valence correlation and correlation between valence electrons and the outermost core electrons. Correlation within the core is often neglected. A large orbital basis is needed to saturate both the valence and core-valence correlation effects. This in turn leads to huge numbers of CSFs, many of which are unimportant. To avoid the problems inherent to the use of a single common orthonormal orbital basis for all correlation effects in the MCHF method, we propose to optimize independent MCHF pair-correlation functions (PCFs), bringing their own orthonormal one-electron basis. Each PCF is generated by allowing single- and double- excitations from a multireference (MR) function. This computational scheme has the advantage of using targeted and optimally localized orbital sets for each PCF. These pair-correlation functions are coupled together and with each component of the MR space through a low dimension generalized eigenvalue problem. Nonorthogonal orbital sets being involved, the interaction and overlap matrices are built using biorthonormal transformation of the coupled basis sets followed by a counter-transformation of the PCF expansions. Applied to the ground state of beryllium, the new method gives total energies that are lower than the ones from traditional CAS-MCHF calculations using large orbital active sets. It is fair to say that we now have the possibility to account for, in a balanced way, correlation deep down in the atomic core in variational calculations

    Cost-Effectiveness of LDL-C Lowering With Evolocumab in Patients With High Cardiovascular Risk in the United States

    Get PDF
    Randomized trials have shown marked reductions in low-density lipoprotein cholesterol (LDL-C), a risk factor for cardiovascular disease (CVD), when evolocumab is administered. We hypothesized that evolocumab added to standard of care (SOC) vs SOC alone is cost-effective in the treatment of patients with heterozygous familial hypercholesterolemia (HeFH) or atherosclerotic CVD (ASCVD) with or without statin intolerance and LDL-C >100 mg/dL. Using a Markov cohort state transition model, primary and recurrent CVD event rates were predicted considering population-specific trial-based mean risk factors and calibrated against observed rates in the real world. The LDL-C–lowering effect from population-specific phase 3 randomized studies for evolocumab was used together with estimated LDL-C–lowering effect on CVD event rates per 38.67-mg/dL LDL-C lowering from a statin-trial meta-analysis. Costs and utilities were included from published sources. Evolocumab treatment was associated with both increased cost and improved quality-adjusted life-years (QALY): HeFH (incremental cost: US153289,incrementalQALY:2.02,incrementalcosteffectivenessratio:US153 289, incremental QALY: 2.02, incremental cost-effectiveness ratio: US75 863/QALY); ASCVD (US158307,1.12,US158 307, 1.12, US141 699/QALY); and ASCVD with statin intolerance (US136903,1.36,US136 903, 1.36, US100 309/QALY). Evolocumab met both the American College of Cardiology/American Heart Association (ACC/AHA) and World Health Organization (WHO) thresholds in each population evaluated. Sensitivity and scenario analyses confirmed that model results were robust to changes in model parameters. Among patients with HeFH and ASCVD with or without statin intolerance, evolocumab added to SOC may provide a cost-effective treatment option for lowering LDL-C using ACC/AHA intermediate/high value and WHO cost-effectiveness thresholds. More definitive information on the clinical and economic value of evolocumab will be available from the forthcoming CVD outcomes study

    Investigations of Ra+^+ properties to test possibilities of new optical frequency standards

    Full text link
    The present work tests the suitability of the narrow transitions $7s \ ^2S_{1/2} \to 6d ^2D_{3/2}and and 7s ^2S_{1/2} \to 6d ^2D_{5/2}inRa in Ra^+foropticalfrequencystandardstudies.Ourcalculationsofthelifetimesofthemetastable for optical frequency standard studies. Our calculations of the lifetimes of the metastable 6dstatesusingtherelativisticcoupledclustertheorysuggestthattheyaresufficientlylongforRa states using the relativistic coupled-cluster theory suggest that they are sufficiently long for Ra^+$ to be considered as a potential candidate for an atomic clock. This is further corroborated by our studies of the hyperfine interactions, dipole and quadrupole polarizabilities and quadrupole moments of the appropriate states of this system.Comment: Latex files, 5 pages, 1 figur
    corecore