5,633 research outputs found
Fermionization of two-component few-fermion systems in a one-dimensional harmonic trap
The nature of strongly interacting Fermi gases and magnetism is one of the
most important and studied topics in condensed-matter physics. Still, there are
many open questions. A central issue is under what circumstances strong
short-range repulsive interactions are enough to drive magnetic correlations.
Recent progress in the field of cold atomic gases allows to address this
question in very clean systems where both particle numbers, interactions and
dimensionality can be tuned. Here we study fermionic few-body systems in a one
dimensional harmonic trap using a new rapidly converging effective-interaction
technique, plus a novel analytical approach. This allows us to calculate the
properties of a single spin-down atom interacting with a number of spin-up
particles, a case of much recent experimental interest. Our findings indicate
that, in the strongly interacting limit, spin-up and spin-down particles want
to separate in the trap, which we interpret as a microscopic precursor of
one-dimensional ferromagnetism in imbalanced systems. Our predictions are
directly addressable in current experiments on ultracold atomic few-body
systems.Comment: 12 pages, 6 figures, published version including two appendices on
our new numerical and analytical approac
An interpolatory ansatz captures the physics of one-dimensional confined Fermi systems
Interacting one-dimensional quantum systems play a pivotal role in physics.
Exact solutions can be obtained for the homogeneous case using the Bethe ansatz
and bosonisation techniques. However, these approaches are not applicable when
external confinement is present. Recent theoretical advances beyond the Bethe
ansatz and bosonisation allow us to predict the behaviour of one-dimensional
confined systems with strong short-range interactions, and new experiments with
cold atomic Fermi gases have already confirmed these theories. Here we
demonstrate that a simple linear combination of the strongly interacting
solution with the well-known solution in the limit of vanishing interactions
provides a simple and accurate description of the system for all values of the
interaction strength. This indicates that one can indeed capture the physics of
confined one-dimensional systems by knowledge of the limits using wave
functions that are much easier to handle than the output of typical numerical
approaches. We demonstrate our scheme for experimentally relevant systems with
up to six particles. Moreover, we show that our method works also in the case
of mixed systems of particles with different masses. This is an important
feature because these systems are known to be non-integrable and thus not
solvable by the Bethe ansatz technique.Comment: 22 pages including methods and supplementary materials, 11 figures,
title slightly change
Post-Wick theorems for symbolic manipulation of second-quantized expressions in atomic many-body perturbation theory
Manipulating expressions in many-body perturbation theory becomes unwieldily
with increasing order of the perturbation theory. Here I derive a set of
theorems for efficient simplification of such expressions. The derived rules
are specifically designed for implementing with symbolic algebra tools. As an
illustration, we count the numbers of Brueckner-Goldstone diagrams in the first
several orders of many-body perturbation theory for matrix elements between two
states of a mono-valent system.Comment: J. Phys. B. (in press); Mathematica packages available from
http://wolfweb.unr.edu/homepage/andrei/WWW-tap/mathematica.htm
Getting ready for the marriage market? The association between divorce risks and investments in attractive body mass among married Europeans
This article explores to what extent married middle-aged individuals in Europe are governed by the risk of experiencing divorce, when shaping their physical appearance. The main result is that divorce risks, proxied by national divorce rates, are negatively connected to body mass index (BMI) among married individuals but unrelated to BMI among singles. Hence, it seems that married people in societies where divorce risks are high are more inclined to invest in their outer appearance. One interpretation is that high divorce rates make married people prepare for a potential divorce and future return to the marriage market
Chiral surfaces self-assembling in one-component systems with isotropic interactions
We show that chiral symmetry can be broken spontaneously in one-component
systems with isotropic interactions, i.e. many-particle systems having maximal
a priori symmetry. This is achieved by designing isotropic potentials that lead
to self-assembly of chiral surfaces. We demonstrate the principle on a simple
chiral lattice and on a more complex lattice with chiral super-cells. In
addition we show that the complex lattice has interesting melting behavior with
multiple morphologically distinct phases that we argue can be qualitatively
predicted from the design of the interaction.Comment: 4 pages, 4 figure
Complexity Measures from Interaction Structures
We evaluate new complexity measures on the symbolic dynamics of coupled tent
maps and cellular automata. These measures quantify complexity in terms of
-th order statistical dependencies that cannot be reduced to interactions
between units. We demonstrate that these measures are able to identify
complex dynamical regimes.Comment: 11 pages, figures improved, minor changes to the tex
Population size estimation for the Warren root collar weevil, Hylobius warreni Wood (Coleoptera: Curculionidae), a pest of regenerating lodgepole pine plantations
The Warren root collar weevil, Hylobius warreni Wood (Coleoptera: Curculionidae), is an endemic pest species of conifers, particularly lodgepole pine (Pinus contorta var. latifolia) (Pinaceae), in British Columbia. Larvae feed on the roots and root collars of young trees, resulting in girdling damage and mortality or growth reductions. Population sizes of adult H. warreni have historically been difficult to assess due to a lack of operational sampling methods or chemical attractants for the species. Therefore, most previous population estimates have relied on indirect or incomplete measures of damage by immature individuals. In this study, we tested the Björklund funnel trap to assess its efficacy as a method to estimate H. warreni populations. Funnel traps were placed on all 182 trees in half of a small (~1 ha) lodgepole pine stand over four days and remained in place for 13 days after the last traps were installed. Adult weevils were captured, marked, and released on the bole of the tree on which they had been caught. It is likely that most of the adult weevils in the plot, which was isolated from any nearby lodgepole pine stands, were caught at least once and many were caught multiple times. Population sizes were estimated using both the Schnabel method and the Schumacher and Eschmeyer method, resulting in population estimates of 1.83-2.19 weevils/tree and 731-875 weevils/ha. These measures are within the range of population sizes estimated by previous studies. The results suggest the Björklund funnel trap may be an effective operational tool for population monitoring for this species and may also be an effective tactic in population reduction strategies
- …