820 research outputs found

    On the Merits of Decentralization in Young Democracies

    Get PDF
    Three features of decentralization proposed by institutional development theory are analyzed for Mozambique's Autarquias, politically autonomous municipalities since 1997. The three issues analyzed in this article are: Consolidation of the fiscal state, democracy, and the development of service quality in the local administration. Under decentralization, each of the three features is shown empirically to allow progress toward political development. Using QCA-analysis, the politics contributing to institutional consolidation are identified. While the different socio-economic contexts of the Autarquias and power sharing play an important role, the effects of direct participation are more ambiguous. Decentralization can contribute to a "state closer to the people” and may correct the deficiencies of "top down” politics characterizing many African States. However, decentralization cannot overcome deep socio-political divides such as those existing in Mozambique within such a short time. Finally, positive development towards consolidation of democracy, of the local state and its service quality depend on different patterns of politics, more complex than general theories propos

    Constraints on perfect fluid and scalar field dark energy models from future redshift surveys

    Full text link
    We discuss the constraints that future photometric and spectroscopic redshift surveys can put on dark energy through the baryon oscillations of the power spectrum. We model the dark energy either with a perfect fluid or a scalar field and take into account the information contained in the linear growth function. We show that the growth function helps to break the degeneracy in the dark energy parameters and reduce the errors on w0,w1w_0,w_1 roughly by 30% making more appealing multicolor surveys based on photometric redshifts. We find that a 200 square degrees spectroscopic survey reaching z=3z = 3 can constrain w0,w1w_0,w_1 to within Δw0=0.21,Δw1=0.26\Delta w_0=0.21,\Delta w_1=0.26 and to Δw0=0.39,Δw1=0.54\Delta w_0=0.39,\Delta w_1=0.54 using photometric redshifts with absolute uncertainty of 0.02. In the scalar field case we show that the slope nn of the inverse power-law potential for dark energy can be constrained to Δn=0.26\Delta n=0.26 (spectroscopic redshifts) or Δn=0.40\Delta n=0.40 (photometric redshifts), i.e. better than with future ground-based supernovae surveys or CMB data.Comment: 27 pages, submitted to MNRA

    Swiss Democracy

    Get PDF
    This open access book provides an updated and fully revised 4th edition of this authoritative analysis of Swiss democracy. It particularly explains the institutions of federalism and consensus government through political power sharing. In this new edition, the authors also address several important changes and challenges that have affected Swiss democracy, including the country's relationship with the EU, fiscal equalisation, direct democracy and the legitimacy of national referendums, territorial conflict, as well as the polarisation of party politics

    Molecular spintronics: Coherent spin transfer in coupled quantum dots

    Full text link
    Time-resolved Faraday rotation has recently demonstrated coherent transfer of electron spin between quantum dots coupled by conjugated molecules. Using a transfer Hamiltonian ansatz for the coupled quantum dots, we calculate the Faraday rotation signal as a function of the probe frequency in a pump-probe setup using neutral quantum dots. Additionally, we study the signal of one spin-polarized excess electron in the coupled dots. We show that, in both cases, the Faraday rotation angle is determined by the spin transfer probabilities and the Heisenberg spin exchange energy. By comparison of our results with experimental data, we find that the transfer matrix element for electrons in the conduction band is of order 0.08 eV and the spin transfer probabilities are of order 10%.Comment: 13 pages, 6 figures; minor change

    Structural basis of control of inward rectifier Kir2 channel gating by bulk anionic phospholipids

    Get PDF
    Inward rectifier potassium (Kir) channel activity is controlled by plasma membrane lipids. Phosphatidylinositol-4,5-bisphosphate (PIP(2)) binding to a primary site is required for opening of classic inward rectifier Kir2.1 and Kir2.2 channels, but interaction of bulk anionic phospholipid (PL(−)) with a distinct second site is required for high PIP(2) sensitivity. Here we show that introduction of a lipid-partitioning tryptophan at the second site (K62W) generates high PIP(2) sensitivity, even in the absence of PL(−). Furthermore, high-resolution x-ray crystal structures of Kir2.2[K62W], with or without added PIP(2) (2.8- and 2.0-Å resolution, respectively), reveal tight tethering of the C-terminal domain (CTD) to the transmembrane domain (TMD) in each condition. Our results suggest a refined model for phospholipid gating in which PL(−) binding at the second site pulls the CTD toward the membrane, inducing the formation of the high-affinity primary PIP(2) site and explaining the positive allostery between PL(−) binding and PIP(2) sensitivity

    On the Merits of Decentralization in Young Democracies

    Get PDF

    Radiative equilibrium in Monte Carlo radiative transfer using frequency distribution adjustment

    Full text link
    The Monte Carlo method is a powerful tool for performing radiative equilibrium calculations, even in complex geometries. The main drawback of the standard Monte Carlo radiative equilibrium methods is that they require iteration, which makes them numerically very demanding. Bjorkman & Wood recently proposed a frequency distribution adjustment scheme, which allows radiative equilibrium Monte Carlo calculations to be performed without iteration, by choosing the frequency of each re-emitted photon such that it corrects for the incorrect spectrum of the previously re-emitted photons. Although the method appears to yield correct results, we argue that its theoretical basis is not completely transparent, and that it is not completely clear whether this technique is an exact rigorous method, or whether it is just a good and convenient approximation. We critically study the general problem of how an already sampled distribution can be adjusted to a new distribution by adding data points sampled from an adjustment distribution. We show that this adjustment is not always possible, and that it depends on the shape of the original and desired distributions, as well as on the relative number of data points that can be added. Applying this theorem to radiative equilibrium Monte Carlo calculations, we provide a firm theoretical basis for the frequency distribution adjustment method of Bjorkman & Wood, and we demonstrate that this method provides the correct frequency distribution through the additional requirement of radiative equilibrium. We discuss the advantages and limitations of this approach, and show that it can easily be combined with the presence of additional heating sources and the concept of photon weighting. However, the method may fail if small dust grains are included... (abridged)Comment: 17 pages, 2 figures, accepted for publication in New Astronom

    Podosomes of dendritic cells facilitate antigen sampling

    Get PDF
    Dendritic cells sample the environment for antigens and play an important role in establishing the link between innate and acquired immunity. Dendritic cells contain mechanosensitive adhesive structures called podosomes that consist of an actin-rich core surrounded by integrins, adaptor proteins and actin network filaments. They facilitate cell migration via localized degradation of extracellular matrix. Here, we show that podosomes of human dendritic cells locate to spots of low physical resistance in the substrate (soft spots) where they can evolve into protrusive structures. Pathogen recognition receptors locate to these protrusive structures where they can trigger localized antigen uptake, processing and presentation to activate T-cells. Our data demonstrate a novel role in antigen sampling for the podosomes of dendritic cell

    Simultaneous measurement of cosmology and intrinsic alignments using joint cosmic shear and galaxy number density correlations

    Full text link
    Cosmic shear is a powerful method to constrain cosmology, provided that any systematic effects are under control. The intrinsic alignment of galaxies is expected to severely bias parameter estimates if not taken into account. We explore the potential of a joint analysis of tomographic galaxy ellipticity, galaxy number density, and ellipticity-number density cross-correlations to simultaneously constrain cosmology and self-calibrate unknown intrinsic alignment and galaxy bias contributions. We treat intrinsic alignments and galaxy biasing as free functions of scale and redshift and marginalise over the resulting parameter sets. Constraints on cosmology are calculated by combining the likelihoods from all two-point correlations between galaxy ellipticity and galaxy number density. The information required for these calculations is already available in a standard cosmic shear dataset. We include contributions to these functions from cosmic shear, intrinsic alignments, galaxy clustering and magnification effects. In a Fisher matrix analysis we compare our constraints with those from cosmic shear alone in the absence of intrinsic alignments. For a potential future large area survey, such as Euclid, the extra information from the additional correlation functions can make up for the additional free parameters in the intrinsic alignment and galaxy bias terms, depending on the flexibility in the models. For example, the Dark Energy Task Force figure of merit is recovered even when more than 100 free parameters are marginalised over. We find that the redshift quality requirements are similar to those calculated in the absence of intrinsic alignments.Comment: 22 pages, 10 figures; extended discussion, otherwise minor changes to match accepted version; published in Astronomy and Astrophysic

    Cosmic Chronometers: Constraining the Equation of State of Dark Energy. I: H(z) Measurements

    Get PDF
    We present new determinations of the cosmic expansion history from red-envelope galaxies. We have obtained for this purpose high-quality spectra with the Keck-LRIS spectrograph of red-envelope galaxies in 24 galaxy clusters in the redshift range 0.2 < z < 1.0. We complement these Keck spectra with high-quality, publicly available archival spectra from the SPICES and VVDS surveys. We improve over our previous expansion history measurements in Simon et al. (2005) by providing two new determinations of the expansion history: H(z) = 97 +- 62 km/sec/Mpc at z = 0.5 and H(z) = 90 +- 40 km/sec/Mpc at z = 0.8. We discuss the uncertainty in the expansion history determination that arises from uncertainties in the synthetic stellar-population models. We then use these new measurements in concert with cosmic-microwave-background (CMB) measurements to constrain cosmological parameters, with a special emphasis on dark-energy parameters and constraints to the curvature. In particular, we demonstrate the usefulness of direct H(z) measurements by constraining the dark- energy equation of state parameterized by w0 and wa and allowing for arbitrary curvature. Further, we also constrain, using only CMB and H(z) data, the number of relativistic degrees of freedom to be 4 +- 0.5 and their total mass to be < 0.2 eV, both at 1-sigma.Comment: Submitted to JCA
    corecore