820 research outputs found
On the Merits of Decentralization in Young Democracies
Three features of decentralization proposed by institutional development theory are analyzed for Mozambique's Autarquias, politically autonomous municipalities since 1997. The three issues analyzed in this article are: Consolidation of the fiscal state, democracy, and the development of service quality in the local administration. Under decentralization, each of the three features is shown empirically to allow progress toward political development. Using QCA-analysis, the politics contributing to institutional consolidation are identified. While the different socio-economic contexts of the Autarquias and power sharing play an important role, the effects of direct participation are more ambiguous. Decentralization can contribute to a "state closer to the people” and may correct the deficiencies of "top down” politics characterizing many African States. However, decentralization cannot overcome deep socio-political divides such as those existing in Mozambique within such a short time. Finally, positive development towards consolidation of democracy, of the local state and its service quality depend on different patterns of politics, more complex than general theories propos
Constraints on perfect fluid and scalar field dark energy models from future redshift surveys
We discuss the constraints that future photometric and spectroscopic redshift
surveys can put on dark energy through the baryon oscillations of the power
spectrum. We model the dark energy either with a perfect fluid or a scalar
field and take into account the information contained in the linear growth
function. We show that the growth function helps to break the degeneracy in the
dark energy parameters and reduce the errors on roughly by 30% making
more appealing multicolor surveys based on photometric redshifts. We find that
a 200 square degrees spectroscopic survey reaching can constrain
to within and to using photometric redshifts with absolute uncertainty
of 0.02. In the scalar field case we show that the slope of the inverse
power-law potential for dark energy can be constrained to
(spectroscopic redshifts) or (photometric redshifts), i.e.
better than with future ground-based supernovae surveys or CMB data.Comment: 27 pages, submitted to MNRA
Swiss Democracy
This open access book provides an updated and fully revised 4th edition of this authoritative analysis of Swiss democracy. It particularly explains the institutions of federalism and consensus government through political power sharing. In this new edition, the authors also address several important changes and challenges that have affected Swiss democracy, including the country's relationship with the EU, fiscal equalisation, direct democracy and the legitimacy of national referendums, territorial conflict, as well as the polarisation of party politics
Molecular spintronics: Coherent spin transfer in coupled quantum dots
Time-resolved Faraday rotation has recently demonstrated coherent transfer of
electron spin between quantum dots coupled by conjugated molecules. Using a
transfer Hamiltonian ansatz for the coupled quantum dots, we calculate the
Faraday rotation signal as a function of the probe frequency in a pump-probe
setup using neutral quantum dots. Additionally, we study the signal of one
spin-polarized excess electron in the coupled dots. We show that, in both
cases, the Faraday rotation angle is determined by the spin transfer
probabilities and the Heisenberg spin exchange energy. By comparison of our
results with experimental data, we find that the transfer matrix element for
electrons in the conduction band is of order 0.08 eV and the spin transfer
probabilities are of order 10%.Comment: 13 pages, 6 figures; minor change
Structural basis of control of inward rectifier Kir2 channel gating by bulk anionic phospholipids
Inward rectifier potassium (Kir) channel activity is controlled by plasma membrane lipids. Phosphatidylinositol-4,5-bisphosphate (PIP(2)) binding to a primary site is required for opening of classic inward rectifier Kir2.1 and Kir2.2 channels, but interaction of bulk anionic phospholipid (PL(−)) with a distinct second site is required for high PIP(2) sensitivity. Here we show that introduction of a lipid-partitioning tryptophan at the second site (K62W) generates high PIP(2) sensitivity, even in the absence of PL(−). Furthermore, high-resolution x-ray crystal structures of Kir2.2[K62W], with or without added PIP(2) (2.8- and 2.0-Å resolution, respectively), reveal tight tethering of the C-terminal domain (CTD) to the transmembrane domain (TMD) in each condition. Our results suggest a refined model for phospholipid gating in which PL(−) binding at the second site pulls the CTD toward the membrane, inducing the formation of the high-affinity primary PIP(2) site and explaining the positive allostery between PL(−) binding and PIP(2) sensitivity
Radiative equilibrium in Monte Carlo radiative transfer using frequency distribution adjustment
The Monte Carlo method is a powerful tool for performing radiative
equilibrium calculations, even in complex geometries. The main drawback of the
standard Monte Carlo radiative equilibrium methods is that they require
iteration, which makes them numerically very demanding. Bjorkman & Wood
recently proposed a frequency distribution adjustment scheme, which allows
radiative equilibrium Monte Carlo calculations to be performed without
iteration, by choosing the frequency of each re-emitted photon such that it
corrects for the incorrect spectrum of the previously re-emitted photons.
Although the method appears to yield correct results, we argue that its
theoretical basis is not completely transparent, and that it is not completely
clear whether this technique is an exact rigorous method, or whether it is just
a good and convenient approximation. We critically study the general problem of
how an already sampled distribution can be adjusted to a new distribution by
adding data points sampled from an adjustment distribution. We show that this
adjustment is not always possible, and that it depends on the shape of the
original and desired distributions, as well as on the relative number of data
points that can be added. Applying this theorem to radiative equilibrium Monte
Carlo calculations, we provide a firm theoretical basis for the frequency
distribution adjustment method of Bjorkman & Wood, and we demonstrate that this
method provides the correct frequency distribution through the additional
requirement of radiative equilibrium. We discuss the advantages and limitations
of this approach, and show that it can easily be combined with the presence of
additional heating sources and the concept of photon weighting. However, the
method may fail if small dust grains are included... (abridged)Comment: 17 pages, 2 figures, accepted for publication in New Astronom
Podosomes of dendritic cells facilitate antigen sampling
Dendritic cells sample the environment for antigens and play an important role in establishing the link between innate and acquired immunity. Dendritic cells contain mechanosensitive adhesive structures called podosomes that consist of an actin-rich core surrounded by integrins, adaptor proteins and actin network filaments. They facilitate cell migration via localized degradation of extracellular matrix. Here, we show that podosomes of human dendritic cells locate to spots of low physical resistance in the substrate (soft spots) where they can evolve into protrusive structures. Pathogen recognition receptors locate to these protrusive structures where they can trigger localized antigen uptake, processing and presentation to activate T-cells. Our data demonstrate a novel role in antigen sampling for the podosomes of dendritic cell
Simultaneous measurement of cosmology and intrinsic alignments using joint cosmic shear and galaxy number density correlations
Cosmic shear is a powerful method to constrain cosmology, provided that any
systematic effects are under control. The intrinsic alignment of galaxies is
expected to severely bias parameter estimates if not taken into account. We
explore the potential of a joint analysis of tomographic galaxy ellipticity,
galaxy number density, and ellipticity-number density cross-correlations to
simultaneously constrain cosmology and self-calibrate unknown intrinsic
alignment and galaxy bias contributions. We treat intrinsic alignments and
galaxy biasing as free functions of scale and redshift and marginalise over the
resulting parameter sets. Constraints on cosmology are calculated by combining
the likelihoods from all two-point correlations between galaxy ellipticity and
galaxy number density. The information required for these calculations is
already available in a standard cosmic shear dataset. We include contributions
to these functions from cosmic shear, intrinsic alignments, galaxy clustering
and magnification effects. In a Fisher matrix analysis we compare our
constraints with those from cosmic shear alone in the absence of intrinsic
alignments. For a potential future large area survey, such as Euclid, the extra
information from the additional correlation functions can make up for the
additional free parameters in the intrinsic alignment and galaxy bias terms,
depending on the flexibility in the models. For example, the Dark Energy Task
Force figure of merit is recovered even when more than 100 free parameters are
marginalised over. We find that the redshift quality requirements are similar
to those calculated in the absence of intrinsic alignments.Comment: 22 pages, 10 figures; extended discussion, otherwise minor changes to
match accepted version; published in Astronomy and Astrophysic
Cosmic Chronometers: Constraining the Equation of State of Dark Energy. I: H(z) Measurements
We present new determinations of the cosmic expansion history from
red-envelope galaxies. We have obtained for this purpose high-quality spectra
with the Keck-LRIS spectrograph of red-envelope galaxies in 24 galaxy clusters
in the redshift range 0.2 < z < 1.0. We complement these Keck spectra with
high-quality, publicly available archival spectra from the SPICES and VVDS
surveys. We improve over our previous expansion history measurements in Simon
et al. (2005) by providing two new determinations of the expansion history:
H(z) = 97 +- 62 km/sec/Mpc at z = 0.5 and H(z) = 90 +- 40 km/sec/Mpc at z =
0.8. We discuss the uncertainty in the expansion history determination that
arises from uncertainties in the synthetic stellar-population models. We then
use these new measurements in concert with cosmic-microwave-background (CMB)
measurements to constrain cosmological parameters, with a special emphasis on
dark-energy parameters and constraints to the curvature. In particular, we
demonstrate the usefulness of direct H(z) measurements by constraining the
dark- energy equation of state parameterized by w0 and wa and allowing for
arbitrary curvature. Further, we also constrain, using only CMB and H(z) data,
the number of relativistic degrees of freedom to be 4 +- 0.5 and their total
mass to be < 0.2 eV, both at 1-sigma.Comment: Submitted to JCA
- …
