4,409 research outputs found

    To Bin or Not To Bin: Decorrelating the Cosmic Equation of State

    Full text link
    The physics behind the acceleration of the cosmic expansion can be elucidated through comparison of the predictions of dark energy equations of state to observational data. In seeking to optimize this, we investigate the advantages and disadvantages of using principal component analysis, uncorrelated bandpowers, and the equation of state within redshift bins. We demonstrate that no one technique is a panacea, with tension between clear physical interpretation from localization and from decorrelated errors, as well as model dependence and form dependence. Specific lessons include the critical role of proper treatment of the high redshift expansion history and the lack of a unique, well defined signal-to-noise or figure of merit.Comment: 26 pages, 28 figure

    Calibrating Dark Energy

    Full text link
    Exploring the diversity of dark energy dynamics, we discover a calibration relation, a uniform stretching of the amplitude of the equation of state time variation with scale factor. This defines homogeneous families of dark energy physics. The calibration factor has a close relation to the standard time variation parameter w_a, and we show that the new, calibrated w_a describes observables, i.e. distance and Hubble parameter as a function of redshift, typically to an accuracy level of 10^{-3}. We discuss implications for figures of merit for dark energy science programs.Comment: 9 pages, 10 figure

    CMB Lensing Constraints on Neutrinos and Dark Energy

    Full text link
    Signatures of lensing of the cosmic microwave background radiation by gravitational potentials along the line of sight carry with them information on the matter distribution, neutrino masses, and dark energy properties. We examine the constraints that Planck, PolarBear, and CMBpol future data, including from the B-mode polarization or the lensing potential, will be able to place on these quantities. We simultaneously fit for neutrino mass and dark energy equation of state including time variation and early dark energy density, and compare the use of polarization power spectra with an optimal quadratic estimator of the lensing. Results are given as a function of systematics level from residual foreground contamination. A realistic CMBpol experiment can effectively constrain the sum of neutrino masses to within 0.05 eV and the fraction of early dark energy to 0.002. We also present a surprisingly simple prescription for calculating dark energy equation of state constraints in combination with supernova distances from JDEM.Comment: 18 pages, 14 figures. Small changes made to match version to be published in Phys. Rev.

    Observational constraints on thawing quintessence models

    Get PDF
    We use a dynamical systems approach to study thawing quintessence models, using a multi-parameter extension of the exponential potential which can approximate the form of typical thawing potentials. We impose observational constraints using a compilation of current data, and forecast the tightening of constraints expected from future dark energy surveys, as well as discussing the relation of our results to analytical constraints already in the literature.Comment: 6 pages MNRAS style with 8 figures included. Minor updates to match MNRAS accepted versio

    The Struve-Sahade effect in the optical spectra of O-type binaries I. Main-sequence systems

    Get PDF
    We present a spectroscopic analysis of four massive binary systems that are known or are good candidates to display the Struve-Sahade effect (defined as the apparent strengthening of the secondary spectrum of the binary when the star is approaching, and the corresponding weakening of the lines when it is receding). We use high resolution optical spectra to determine new orbital solutions and spectral types of HD 165052, HD 100213, HD 159176 and DH Cep. As good knowledge of the fundamental parameters of the considered systems is necessary to examine the Struve-Sahade effect. We then study equivalent width variations in the lines of both components of these binaries during their orbital cycle. In the case of these four systems, variations appear in the equivalent widths of some lines during the orbital cycle, but the definition given above can any longer be valid, since it is now clear that the effect modifies the primary spectrum as much as the secondary spectrum. Furthermore, the lines affected, and the way in which they are affected, depend on the considered system. For at least two of them (HD 100213 and HD 159176) these variations probably reflect the ellipsoidal variable nature of the system.Comment: 12 pages, 20 figures, in press A&

    Shifting the Universe: Early Dark Energy and Standard Rulers

    Full text link
    The presence of dark energy at high redshift influences both the cosmic sound horizon and the distance to last scattering of the cosmic microwave background. We demonstrate that through the degeneracy in their ratio, early dark energy can lie hidden in the CMB temperature and polarization spectra, leading to an unrecognized shift in the sound horizon. If the sound horizon is then used as a standard ruler, as in baryon acoustic oscillations, then the derived cosmological parameters can be nontrivially biased. Fitting for the absolute ruler scale (just as supernovae must be fit for the absolute candle magnitude) removes the bias but decreases the leverage of the BAO technique by a factor 2.Comment: 6 pages, 3 figure
    corecore