1,721 research outputs found

    The distribution of 1/a in photographic meteor orbits

    Get PDF
    The distribution of reciprocal semi-major axes in photographic meteor orbits is studied. A detailed classification of the orbits is made according to quality. The distribution of 1/a in precise orbits is multimodal with two broad maxima approximately centered on 0.05 and 0.40 (AU)/1. Minima in the distribution appear near 0.20 and 0.66 (AU)/1 corresponding to Jupiter's and Mars' position in the 1/a diagram. Considerable fine structure appears in the 1/a distribution. Resonance gaps corresponding to commensurabilities with Jupiter are detected. The gaps are similar to the well studied Kirkwood gaps in the asteroid belt

    Quantum decoherence in the theory of open systems

    Full text link
    In the framework of the Lindblad theory for open quantum systems, we determine the degree of quantum decoherence of a harmonic oscillator interacting with a thermal bath. It is found that the system manifests a quantum decoherence which is more and more significant in time. We calculate also the decoherence time scale and analyze the transition from quantum to classical behaviour of the considered system.Comment: 6 pages; talk at the 3rd International Workshop "Quantum Physics and Communication" (QPC 2005), Dubna, Russia, 200

    Universal bounds for the Holevo quantity, coherent information \\ and the Jensen-Shannon divergence

    Full text link
    The Holevo quantity provides an upper bound for the mutual information between the sender of a classical message encoded in quantum carriers and the receiver. Applying the strong sub-additivity of entropy we prove that the Holevo quantity associated with an initial state and a given quantum operation represented in its Kraus form is not larger than the exchange entropy. This implies upper bounds for the coherent information and for the quantum Jensen--Shannon divergence. Restricting our attention to classical information we bound the transmission distance between any two probability distributions by the entropic distance, which is a concave function of the Hellinger distance.Comment: 5 pages, 2 figure

    Hydrodynamical Simulations of the Barred Spiral Galaxy NGC 6782

    Full text link
    NGC 6782 is an early-type barred spiral galaxy exhibiting a rich and complex morphology with multiple ring patterns. To provide a physical understanding of its structure and kinematical properties, two-dimensional hydrodynamical simulations have been carried out. Numerical calculations reveal that the striking features in NGC 6782 can be reproduced provided that the gas flow is governed by the gravitational potential associated with a slowly rotating strong bar. In particular, the response of the gaseous disk to the bar potential leads to the excitation of spiral density waves at the inner Lindblad resonance giving rise to the appearance of a nearly circular nuclear ring with a pair of dust lanes. For a sufficiently strong bar potential, the inner 4:1 spiral density waves are also excited. The interaction of the higher harmonic waves with the waves excited at the inner Lindblad resonance and confined by the outer Lindblad resonance results in the observed diamond-shaped (or pointy oval) inner ring structure. The overall gas morphology and kinematical features are both well reproduced by the model provided that the pattern speed of the bar is ∌25\sim 25 km s−1^{-1} kpc−1^{-1}.Comment: 35 pages, 14 figure

    A Dust-Penetrated Classification Scheme for Bars as Inferred from their Gravitational Force Fields

    Get PDF
    The division of galaxies into ``barred'' (SB) and ``normal'' (S) spirals is a fundamental aspect of the Hubble galaxy classification system. This ``tuning fork'' view was revised by de Vaucouleurs, whose classification volume recognized apparent ``bar strength'' (SA, SAB, SB) as a continuous property of galaxies called the ``family''. However, the SA, SAB, and SB families are purely visual judgments that can have little bearing on the actual bar strength in a given galaxy. Until very recently, published bar judgments were based exclusively on blue light images, where internal extinction or star formation can either mask a bar completely or give the false impression of a bar in a nonbarred galaxy. Near-infrared camera arrays, which principally trace the old stellar populations in both normal and barred galaxies, now facilitate a quantification of bar strength in terms of their gravitational potentials and force fields. In this paper, we show that the maximum value, Qb, of the ratio of the tangential force to the mean radial force is a quantitative measure of the strength of a bar. Qb does not measure bar ellipticity or bar shape, but rather depends on the actual forcing due to the bar embedded in its disk. We show that a wide range of true bar strengths characterizes the category ``SB'', while de Vaucouleurs category ``SAB'' corresponds to a much narrower range of bar strengths. We present Qb values for 36 galaxies, and we incorporate our bar classes into a dust-penetrated classification system for spiral galaxies.Comment: Accepted for publication in the Astrophysical Journal (LaTex, 30 pages + 3 figures); Figs. 1 and 3 are in color and are also available at http://bama.ua.edu/~rbuta/bars

    Geometric phase distributions for open quantum systems

    Get PDF
    In an open system, the geometric phase should be described by a distribution. We show that a geometric phase distribution for open system dynamics is in general ambiguous, but the imposition of reasonable physical constraints on the environment and its coupling with the system yields a unique geometric phase distribution that applies even for mixed states, non-unitary dynamics, and non-cyclic evolutions.Comment: Some minor revisions, references update

    Giant Molecular Clouds are More Concentrated to Spiral Arms than Smaller Clouds

    Full text link
    From our catalog of Milky Way molecular clouds, created using a temperature thresholding algorithm on the Bell Laboratories 13CO Survey, we have extracted two subsets:(1) Giant Molecular Clouds (GMCs), clouds that are definitely larger than 10^5 solar masses, even if they are at their `near distance', and (2) clouds that are definitely smaller than 10^5 solar masses, even if they are at their `far distance'. The positions and velocities of these clouds are compared to the loci of spiral arms in (l, v) space. The velocity separation of each cloud from the nearest spiral arm is introduced as a `concentration statistic'. Almost all of the GMCs are found near spiral arms. The density of smaller clouds is enhanced near spiral arms, but some clouds (~10%) are unassociated with any spiral arm. The median velocity separation between a GMC and the nearest spiral arm is 3.4+-0.6 km/s, whereas the median separation between smaller clouds and the nearest spiral arm is 5.5+-0.2 km/s.Comment: 11 pages, 3 figure

    OB Stars in the Solar Neighborhood I: Analysis of their Spatial Distribution

    Get PDF
    We present a newly-developed, three-dimensional spatial classification method, designed to analyze the spatial distribution of early type stars within the 1 kpc sphere around the Sun. We propose a distribution model formed by two intersecting disks -the Gould Belt (GB) and the Local Galactic Disk (LGD)- defined by their fundamental geometric parameters. Then, using a sample of about 550 stars of spectral types earlier than B6 and luminosity classes between III and V, with precise photometric distances of less than 1 kpc, we estimate for some spectral groups the parameters of our model, as well as single membership probabilities of GB and LGD stars, thus drawing a picture of the spatial distribution of young stars in the vicinity of the Sun.Comment: 28 pages including 9 Postscript figures, one of them in color. Accepted for publication in The Astronomical Journal, 30 January 200

    Test Particle in a Quantum Gas

    Get PDF
    A master equation with a Lindblad structure is derived, which describes the interaction of a test particle with a macroscopic system and is expressed in terms of the operator valued dynamic structure factor of the system. In the case of a free Fermi or Bose gas the result is evaluated in the Brownian limit, thus obtaining a single generator master equation for the description of quantum Brownian motion in which the correction due to quantum statistics is explicitly calculated. The friction coefficients for Boltzmann and Bose or Fermi statistics are compared.Comment: 9 pages, revtex, no figure

    Dynamical Friction and the Distribution of Dark Matter in Barred Galaxies

    Get PDF
    We use fully self-consistent N-body simulations of barred galaxies to show that dynamical friction from a dense dark matter halo dramatically slows the rotation rate of bars. Our result supports previous theoretical predictions for a bar rotating within a massive halo. On the other hand, low density halos, such as those required for maximum disks, allow the bar to continue to rotate at a high rate. There is somewhat meager observational evidence indicating that bars in real galaxies do rotate rapidly and we use our result to argue that dark matter halos must have a low central density in all high surface brightness disk galaxies, including the Milky Way. Bars in galaxies that have larger fractions of dark matter should rotate slowly, and we suggest that a promising place to look for such candidate objects is among galaxies of intermediate surface brightness.Comment: 6 pages, Latex, 3 figures, Accepted by Ap.J.L., revised copy, includes an added paragrap
    • 

    corecore