11 research outputs found
Cellular network based multistatic integrated sensing and communication systems
A novel multistatic integrated sensing and communication (ISAC) system based on cellular network is proposed. It can make use of widespread base stations (BSs) to perform cooperative sensing in wide area. This system is important since the deployment of sensing function can be achieved upon the mobile communication network at low complexity and cost without modifying the architecture of BSs for full duplexing. In this work, the topology of sensing cell is first provided, which can be duplicated to seamlessly cover the cellular network. Each sensing cell consists of a single central BS transmitting signals and multiple neighboring BSs receiving reflected signals from sensing objects. Then an estimating approach is described for obtaining position and velocity of sensing objects that locate in the sensing cell. Joint data processing with an efficient optimization method is also provided. In addition, key issues in the cellular network based multistatic ISAC system are analyzed. Simulation results show that the multistatic ISAC system can reduce interference power by over 10 dBm and significantly improve position and velocity estimation accuracy of objects when compared with the monostatic ISAC system, demonstrating the effectiveness and promise of implementing the proposed system in the mobile network
Multistatic Integrated Sensing and Communication System Based on Macro–Micro Cooperation
A novel multistatic integrated sensing and communication (ISAC) system based on macro–micro cooperation for the sixth-generation (6G) mobile network is proposed. Instead of using macrosites at both the transmitter and receiver sides, microsites are considered as receivers in cooperative sensing. This system is important since microsites can be deployed more flexibly to reduce their distances to the sensing objects, providing better coverage for sensing service. In this work, we first analyze the deployment problem of microsites, which can be deployed along the radius and azimuth angle to cover macrosite cells. The coverage area of each microsite is derived in terms of its position in the cell. Then, we describe an efficient estimating approach for obtaining the position and velocity of sensing objects in the macrosite cell. By choosing multiple microsites around the targeted sensing area, joint data processing with an efficient optimization method is also provided. Simulation results show that the multistatic ISAC system employing macro–micro cooperation can improve the position and velocity estimation accuracy of objects compared to systems employing macrosite cooperation alone, demonstrating the effectiveness and potential for implementing the proposed system in the 6G mobile network