321 research outputs found

    Comparison of magnetic energy and helicity in coronal jet simulations

    Get PDF
    Context. While non-potential (free) magnetic energy is a necessary element of any active phenomenon in the solar corona, its role as a marker of the trigger of the eruptive process remains elusive. Meanwhile, recent analyses of numerical simulations of solar active events have shown that quantities based on relative magnetic helicity could highlight the eruptive nature of solar magnetic systems. Aims. Based on the unique decomposition of the magnetic field into potential and non-potential components, magnetic energy and helicity can also both be uniquely decomposed into two quantities. Using two 3D magnetohydrodynamics parametric simulations of a configuration that can produce coronal jets, we compare the dynamics of the magnetic energies and of the relative magnetic helicities. Methods. Both simulations share the same initial setup and line-tied bottom-boundary driving profile. However, they differ by the duration of the forcing. In one simulation, the system is driven sufficiently so that a point of no return is passed and the system induces the generation of a helical jet. The generation of the jet is, however, markedly delayed after the end of the driving phase; a relatively long phase of lower-intensity reconnection takes place before the jet is eventually induced. In the other reference simulation, the system is driven during a shorter time, and no jet is produced. Results. As expected, we observe that the jet-producing simulation contains a higher value of non-potential energy and non-potential helicity compared to the non-eruptive system. Focussing on the phase between the end of the driving-phase and the jet generation, we note that magnetic energies remain relatively constant, while magnetic helicities have a noticeable evolution. During this post-driving phase, the ratio of the non-potential to total magnetic energy very slightly decreases while the helicity eruptivity index, which is the ratio of the non-potential helicity to the total relative magnetic helicity, significantly increases. The jet is generated when the system is at the highest value of this helicity eruptivity index. This proxy critically decreases during the jet-generation phase. The free energy also decreases but does not present any peak when the jet is being generated. Conclusions. Our study further strengthens the importance of helicities, and in particular of the helicity eruptivity index, to understand the trigger mechanism of solar eruptive events

    Toroidal Miller-Turner and Soloviev CME models in EUHFORIA: I. Implementation

    Full text link
    The aim of this paper is to present the implementation of two new CME models in the space weather forecasting tool, EUHFORIA. We introduce the two toroidal CME models analytically, along with their numerical implementation in EUHFORIA. One model is based on the modified Miller-Turner (mMT) solution, while the other is derived from the Soloviev equilibrium, a specific solution of the Grad-Shafranov equation. The magnetic field distribution in both models is provided in analytic formulae, enabling a swift numerical computation. After detailing the differences between the two models, we present a collection of thermodynamic and magnetic profiles obtained at Earth using these CME solutions in EUHFORIA with a realistic solar wind background. Subsequently, we explore the influence of their initial parameters on the time profiles at L1. In particular, we examine the impact of the initial density, magnetic field strength, velocity, and minor radius. In EUHFORIA, we obtained different thermodynamic and magnetic profiles depending on the CME model used. We found that changing the initial parameters affects both the amplitude and the trend of the time profiles. For example, using a high initial speed results in a fast evolving and compressed magnetic structure. The speed of the CME is also linked to the strength of the initial magnetic field due to the contribution of the Lorentz force on the CME expansion. However, increasing the initial magnetic field also increases the computation time. Finally, the expansion and integrity of the magnetic structure can be controlled via the initial density of the CME. Both toroidal CME models are successfully implemented in EUHFORIA and can be utilized to predict the geo-effectiveness of the impact of real CME events. Moreover, the current implementation could be easily modified to model other toroidal magnetic configurations

    Novel coal gasification process: Improvement of syngas yield and reduction of emissions

    Get PDF
    This article is intended to propose and model an innovative process layout for coal gasification that improves the production of syngas and also reduces the sulfur and CO2emissions. The typical coal gasification process uses Sulfur Recovery Units to convert H2S to sulfur, but these have some disadvantage, e.g low sulfur price, coal charge with low sulfur flow rate, use of Tail Gas Treatment unit. Compared to the Claus process, this solution converts H2S and CO2into syngas (economically appealing), reduces emission of H2S and CO2and allows the use of coal charge with high sulfur flow rate, e.g. 9.5% mol/mol. The novel process takes advantage of a double amine wash, a thermal regenerative furnace and considers the recycle of the acid gases coming from the catalytic reactor to further promote the H2S conversion. In particular, the double amine wash is useful to purify the H2S stream to be sent to the thermal furnace from the syngas and CO2, in order to reduce the reactor inlet flow rate. The regenerative furnace is simulated using a large detailed kinetic scheme to appropriately describe the minor species (among them, pollutants like CS2 and COS). As a result, the recycle appears to substantially reduce the pollutant emissions. In addition, the conversion of the Claus process into the novel process doesn't require any change in the main equipment, just needing for a variation in the layout and the operating conditions

    Additivity of relative magnetic helicity in finite volumes

    Get PDF
    CONTEXT: Relative magnetic helicity is conserved by magneto-hydrodynamic evolution even in the presence of moderate resistivity. For that reason, it is often invoked as the most relevant constraint on the dynamical evolution of plasmas in complex systems, such as solar and stellar dynamos, photospheric flux emergence, solar eruptions, and relaxation processes in laboratory plasmas. However, such studies often indirectly imply that relative magnetic helicity in a given spatial domain can be algebraically split into the helicity contributions of the composing subvolumes, in other words that it is an additive quantity. A limited number of very specific applications have shown that this is not the case. AIMS: Progress in understanding the nonadditivity of relative magnetic helicity requires removal of restrictive assumptions in favor of a general formalism that can be used in both theoretical investigations and numerical applications. METHODS: We derive the analytical gauge-invariant expression for the partition of relative magnetic helicity between contiguous finite volumes, without any assumptions on either the shape of the volumes and interface, or the employed gauge. RESULTS: We prove the nonadditivity of relative magnetic helicity in finite volumes in the most general, gauge-invariant formalism, and verify this numerically. We adopt more restrictive assumptions to derive known specific approximations, which yields a unified view of the additivity issue. As an example, the case of a flux rope embedded in a potential field shows that the nonadditivity term in the partition equation is, in general, non-negligible. CONCLUSIONS: The nonadditivity of relative magnetic helicity can potentially be a serious impediment to the application of relative helicity conservation as a constraint on the complex dynamics of magnetized plasmas. The relative helicity partition formula can be applied to numerical simulations to precisely quantify the effect of nonadditivity on global helicity budgets of complex physical processes

    Magnetic Helicity Evolution and Eruptive Activity in NOAA Active Region 11158

    Get PDF
    Coronal mass ejections are among the Sun’s most energetic activity events yet the physical mechanisms that lead to their occurrence are not yet fully understood. They can drive major space weather impacts at Earth, so knowing why and when these ejections will occur is required for accurate space weather forecasts. In this study we use a 4 day time series of a quantity known as the helicity ratio, ∣H J ∣/∣H V ∣ (helicity of the current-carrying part of the active region field to the total relative magnetic helicity within the volume), which has been computed from nonlinear force-free field extrapolations of NOAA active region 11158. We compare the evolution of ∣H J ∣/∣H V ∣ with the activity produced in the corona of the active region and show this ratio can be used to indicate when the active region is prone to eruption. This occurs when ∣H J ∣/∣H V ∣ exceeds a value of 0.1, as suggested by previous studies. We find the helicity ratio variations to be more pronounced during times of strong flux emergence, collision and reconnection between fields of different bipoles, shearing motions, and reconfiguration of the corona through failed and successful eruptions. When flux emergence, collision, and shearing motions have lessened, the changes in helicity ratio are somewhat subtle despite the occurrence of significant eruptive activity during this time

    Diffusion-flame flickering as a hydrodynamic global mode

    Get PDF
    The present study employs a linear global stability analysis to investigate buoyancy-induced flickering of axisymmetric laminar jet diffusion flames as a hydrodynamic global mode. The instability-driving interactions of the buoyancy force with the density differences induced by the chemical heat release are described in the infinitely fast reaction limit for unity Lewis numbers of the reactants. The analysis determines the critical conditions at the onset of the linear global instability as well as the Strouhal number of the associated oscillations in terms of the governing parameters of the problem. Marginal instability boundaries are delineated in the Froude number/Reynolds number plane for different fuel jet dilutions. The results of the global stability analysis are compared with direct numerical simulations of time-dependent axisymmetric jet flames and also with results of a local spatio-temporal stability analysis.Norbert Peters pointed out the need for the present analysis in his seminal paper with John Buckmaster published thirty years ago (Buckmaster & Peters 1986). It is with great sorrow that we received the news of his passing last year. This paper is devoted to his memory in gratitude for his many outstanding contributions to Combustion Science. The constructive comments of one anonymous referee have led to substantial improvements of the paper and are gratefully acknowledged. This work was supported by the Spanish MCINN through project no. CSD2010-00010 and by the Spanish MINECO through project no. DPI2014-59292-C3-1-P

    Self-consistent propagation of flux ropes in realistic coronal simulations

    Full text link
    The aim of this paper is to demonstrate the possible use of the new coronal model COCONUT to compute a detailed representation of a numerical CME at 0.1~AU, after its injection at the solar surface and propagation in a realistic solar wind, as derived from observed magnetograms. We present the implementation and propagation of modified Titov-D\'emoulin (TDm) flux ropes in the COCONUT 3D MHD coronal model. The background solar wind is reconstructed in order to model two opposite configurations representing a solar activity maximum and minimum respectively. Both were derived from magnetograms which were obtained by the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamic Observatory (SDO) satellite. We track the propagation of 24 flux ropes, which differ only by their initial magnetic flux. We especially investigate the geometry of the flux rope during the early stages of the propagation as well as the influence of its initial parameters and solar wind configuration on 1D profiles derived at 0.1~AU. At the beginning of the propagation, the shape of the flux ropes varies between simulations during low and high solar activity. We find dynamics that are consistent with the standard CME model, such as the pinching of the legs and the appearance of post-flare loops. Despite the differences in geometry, the synthetic density and magnetic field time profiles at 0.1~AU are very similar in both solar wind configurations. These profiles are similar to those observed further in the heliosphere and suggest the presence of a magnetic ejecta composed of the initially implemented flux rope and a sheath ahead of it. Finally, we uncover relationships between the properties of the magnetic ejecta, such as density or speed and the initial magnetic flux of our flux ropes.Comment: 20 pages, 13 figure

    Biogeographic, Atmospheric, and Climatic Factors Influencing Tree Growth in Mediterranean Aleppo Pine Forests

    Get PDF
    There is a lack of knowledge on how tree species respond to climatic constraints like water shortages and related atmospheric patterns across broad spatial and temporal scales. These assessments are needed to project which populations will better tolerate or respond to global warming across the tree species distribution range. Warmer and drier conditions have been forecasted for the Mediterranean Basin, where Aleppo pine (Pinus halepensisMill.) is the most widely distributed conifer in dry sites. This species shows plastic growth responses to climate, being particularly sensitive to drought. We evaluated how 32 Aleppo pine forests responded to climate during the second half of the 20th century by using dendrochronology. Climatic constraints of radial growth were inferred by fitting the Vaganov-Shashkin (VS-Lite) growth model to ring-width data from our Aleppo pine forest network. Our findings reported that Aleppo pine growth decreased and showed the highest common coherence among trees in dry, continental sites located in southeastern and eastern inland Spain and Algeria. In contrast, growth increased in wetter sites located in northeastern Spain. Overall, across the Aleppo pine network tree growth was enhanced by prior wet winters and cool and wet springs, whilst warm summers were associated with less growth. The relationships between site ring-width chronologies were higher in nearby forests. This explains why Aleppo pine growth was distinctly linked to indices of atmospheric circulation patterns depending on the geographical location of the forests. The western forests were more influenced by moisture and temperature conditions driven by the Western Mediterranean Oscillation (WeMO) and the Northern Atlantic Oscillation (NAO), the southern forests by the East Atlantic (EA) and the august NAO, while the Balearic, Tunisian and northeastern sites by the Arctic Oscillation (AO) and the Scandinavian pattern (SCA). The climatic constraints for Aleppo pine tree growth and its biogeographical variability were well captured by the VS-Lite model. The model performed better in dry and continental sites, showing strong growth coherence between trees and climatic limitations of growth. Further research using similar broad-scale approaches to climate-growth relationships in drought-prone regions deserves more attention
    corecore