8,950 research outputs found

    A Wireless Multifunctional SSVEP-Based Brain Computer Interface Assistive System

    Full text link
    IEEE Several kinds of brain-computer interface (BCI) systems have been proposed to compensate for the lack of medical technology for assisting patients who lose the ability to use motor functions to communicate with the outside world. However, most of the proposed systems are limited by their non-portability, impracticality and inconvenience because of the adoption of wired or invasive electroencephalography (EEG) acquisition devices. Another common limitation is the shortage of functions provided because of the difficulty of integrating multiple functions into one BCI system. In this study, we propose a wireless, non-invasive and multifunctional assistive system which integrates steady state visually evoked potential (SSVEP)-based BCI and a robotic arm to assist patients to feed themselves. Patients are able to control the robotic arm via the BCI to serve themselves food. Three other functions: video entertainment, video calling, and active interaction are also integrated. This is achieved by designing a functional menu and integrating multiple subsystems. A refinement decision-making mechanism is incorporated to ensure the accuracy and applicability of the system. Fifteen participants were recruited to validate the usability and performance of the system. The averaged accuracy and information transfer rate (ITR) achieved is 90.91% and 24.94 bit per min respectively. The feedback from the participants demonstrates that this assistive system is able to significantly improve the quality of daily life

    A wireless steady state visually evoked potential-based BCI eating assistive system

    Full text link
    © 2017 IEEE. Brain-Computer interface (BCI) which aims at enabling users to perform tasks through their brain waves has been a feasible and worth developing solution for growing demand of healthcare. Current proposed BCI systems are often with lower applicability and do not provide much help for reducing burdens of users because of the time-consuming preparation required by adopted wet sensors and the shortage of provided interactive functions. Here, by integrating a state visually evoked potential (SSVEP)-based BCI system and a robotic eating assistive system, we propose a non-invasive wireless steady state visually evoked potential (SSVEP)-based BCI eating assistive system that enables users with physical disabilities to have meals independently. The analysis compared different methods of classification and indicated the best method. The applicability of the integrated eating assistive system was tested by an Amyotrophic Lateral Sclerosis (ALS) patient, and a questionnaire reply and some suggestion are provided. Fifteen healthy subjects engaged the experiment, and an average accuracy of 91.35%, and information transfer rate (ITR) of 20.69 bit per min are achieved. For online performance evaluation, the ALS patient gave basic affirmation and provided suggestions for further improvement. In summary, we proposed a usable SSVEP-based BCI system enabling users to have meals independently. With additional adjustment of movement design of the robotic arm and classification algorithm, the system may offer users with physical disabilities a new way to take care of themselves

    Influence of EEG tonic changes on Motor Imagery performance

    Full text link
    © 2017 IEEE. In Motor Imagery literature, performance predictors are commonly divided in four categories: personal, psychological, anatomical and neurophysiological. However these predictors are limited to inter-subjects changes. To overcome this limitation and evaluate intra-subjects performance, we tried to combine two groups of these measures: psychological and neurophysiological. As neurophysiological variables tonic changes in resting EEG theta and alpha sub-bands were considered. As psychological parameter we analyzed internalized attention and its correlates in lower alpha. We found that when internalized attention doesn't decrease, Motor Imagery performance outcome can be correctly predicted by resting EEG tonic variations

    Spatial Filtering for EEG-Based Regression Problems in Brain-Computer Interface (BCI)

    Full text link
    © 1993-2012 IEEE. Electroencephalogram (EEG) signals are frequently used in brain-computer interfaces (BCIs), but they are easily contaminated by artifacts and noise, so preprocessing must be done before they are fed into a machine learning algorithm for classification or regression. Spatial filters have been widely used to increase the signal-to-noise ratio of EEG for BCI classification problems, but their applications in BCI regression problems have been very limited. This paper proposes two common spatial pattern (CSP) filters for EEG-based regression problems in BCI, which are extended from the CSP filter for classification, by using fuzzy sets. Experimental results on EEG-based response speed estimation from a large-scale study, which collected 143 sessions of sustained-attention psychomotor vigilance task data from 17 subjects during a 5-month period, demonstrate that the two proposed spatial filters can significantly increase the EEG signal quality. When used in LASSO and k-nearest neighbors regression for user response speed estimation, the spatial filters can reduce the root-mean-square estimation error by 10.02-19.77\%, and at the same time increase the correlation to the true response speed by 19.39-86.47\%

    The Generation of Successive Unmarked Mutations and Chromosomal Insertion of Heterologous Genes in Actinobacillus pleuropneumoniae Using Natural Transformation

    Get PDF
    We have developed a simple method of generating scarless, unmarked mutations in Actinobacillus pleuropneumoniae by exploiting the ability of this bacterium to undergo natural transformation, and with no need to introduce plasmids encoding recombinases or resolvases. This method involves two successive rounds of natural transformation using linear DNA: the first introduces a cassette carrying cat (which allows selection by chloramphenicol) and sacB (which allows counter-selection using sucrose) flanked by sequences to either side of the target gene; the second transformation utilises the flanking sequences ligated directly to each other in order to remove the cat-sacB cassette. In order to ensure efficient uptake of the target DNA during transformation, A. pleuropneumoniae uptake sequences are added into the constructs used in both rounds of transformation. This method can be used to generate multiple successive deletions and can also be used to introduce targeted point mutations or insertions of heterologous genes into the A. pleuropneumoniae chromosome for development of live attenuated vaccine strains. So far, we have applied this method to highly transformable isolates of serovars 8 (MIDG2331), which is the most prevalent in the UK, and 15 (HS143). By screening clinical isolates of other serovars, it should be possible to identify other amenable strains

    Assessment of measurement of salivary urea by ATR-FTIR spectroscopy to screen for chronic kidney disease

    Get PDF
    Stages of chronic kidney disease (CKD) are currently defined by estimated glomerular filtration rates (eGFR) and require measurement of serum creatinine concentrations. Previous studies have shown a good correlation between salivary and serum urea levels and the stage of CKD. However, quantitative salivary urea assays in current clinical use require costly and labour-intensive commercial kits which restricts the advantage of using saliva and limits wider applicability as a quick and easy means of assessing renal function. Attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy has been shown to provide a potentially straightforward, reagent-free method for the identification of a range of disease-related biomarkers and is in current clinical use for analyses of the chemical composition of kidney stones. We assessed the feasibility of ATR-FTIR spectroscopy as an alternative method to measure salivary urea in patients with different stages of CKD. The ATR-FTIR spectra of dried saliva samples from 6 healthy controls and 20 CKD patients (stages 1-5) were analysed to provide their urea concentrations. The lower limit of detection of salivary urea by the ATR-FTIR spectroscopy method was 1-2 mM, at the lower end of the clinically-relevant range. Statistically significant differences in salivary urea concentrations were demonstrated between healthy subjects (4.1±0.5 mM) and patients with CKD stages 3-5 (CKD stage 3: 6.8±0.7 mM; CKD stage 4: 9.1±1 mM; CKD stage 5: 14.8±1.6 mM). These salivary urea concentrations correlated well with serum urea levels in the same patients measured by an automated analyser (Spearman's rank correlation coefficient of 0.71; p<0.001). The ability of the method to detect and stage CKD was assessed from the sensitivity and specificity parameters of a receiver operating characteristics (ROC) curve analysis. This proof-of-concept study demonstrates that quantitation of salivary urea by ATR-FTIR spectroscopy could provide a viable tool for rapid and cost-effective diagnosis of stages 3-5 CKD

    The effects of different fatigue levels on brain–behavior relationships in driving

    Full text link
    © 2019 The Authors. Brain and Behavior published by Wiley Periodicals, Inc. Background: In the past decade, fatigue has been regarded as one of the main factors impairing task performance and increasing behavioral lapses during driving, even leading to fatal car crashes. Although previous studies have explored the impact of acute fatigue through electroencephalography (EEG) signals, it is still unclear how different fatigue levels affect brain–behavior relationships. Methods: A longitudinal study was performed to investigate the brain dynamics and behavioral changes in individuals under different fatigue levels by a sustained attention task. This study used questionnaires in combination with actigraphy, a noninvasive means of monitoring human physiological activity cycles, to conduct longitudinal assessment and tracking of the objective and subjective fatigue levels of recruited participants. In this study, degrees of effectiveness score (fatigue rating) are divided into three levels (normal, reduced, and high risk) by the SAFTE fatigue model. Results: Results showed that those objective and subjective indicators were negatively correlated to behavioral performance. In addition, increased response times were accompanied by increased alpha and theta power in most brain regions, especially the posterior regions. In particular, the theta and alpha power dramatically increased in the high-fatigue (high-risk) group. Additionally, the alpha power of the occipital regions showed an inverted U-shaped change. Conclusion: Our results help to explain the inconsistent findings among existing studies, which considered the effects of only acute fatigue on driving performance while ignoring different levels of resident fatigue, and potentially lead to practical and precise biomathematical models to better predict the performance of human operators

    Voice Navigation Effects on Real-World Lane Change Driving Analysis Using an Electroencephalogram

    Full text link
    © 2018 IEEE. Improving the degree of assistance given by in-car navigation systems is an important issue for the safety of both drivers and passengers. There is a vast body of research that assesses the usability and interfaces of the existing navigation systems but very few investigations study the impact on the brain activity based on navigation-based driving. In this paper, a real-world experiment is designed to acquire the electroencephalography (EEG) and in-car information to analyze the dynamic brain activity while the driver is performing the lane-changing task based on the auditory instructions from an in-car navigation system. The results show that auditory cues can influence the speed and increase the frontal EEG delta and beta power, which is related to motor preparation and decision making during a lane change. However, there were no significant results on the alpha power. A better lane-change assessment can be obtained using specific vehicle information (lateral acceleration and heading angle) with EEG features for future naturalized driving study

    Redistribution of multi-phase particulate organic carbon in a marine shelf and canyon system during an exceptional river flood: Effects of Typhoon Morakot on the Gaoping River-Canyon system

    Get PDF
    This is the final published version of the article. It was originally published in Marine Geology (Sparkes RB, Lin I-T, Hovius N, Galy A, Liu JT, Xu X, Yang R, Marine Geology 2015, 363, 191–201, doi:10.1016/j.margeo.2015.02.013) http://dx.doi.org/10.1016/j.margeo.2015.02.013Volumetrically, turbidity currents are the prime suppliers of sediment to the deep sea, and conveyors of organic carbon from the terrestrial biosphere and submarine shelf into marine depositional basins. They result from complex processes of erosion, transport and deposition that can be difficult to study in detail. Here we present data from the Gaoping submarine canyon system, off SW Taiwan, which was perturbed in 2009 by the addition of flood deposits following Typhoon Morakot and sampled by gravity coring less than 2 months after the event. We use the different origins of organic carbon, distinguished by their carbon and nitrogen concentrations and δ13C and δ15N isotopic composition, to compare and contrast standard and extreme sedimentological conditions. Using well-constrained end-members, the results were de-convolved into inputs of metamorphic and sedimentary fossil organic carbon eroded within the Gaoping River basin, terrestrial non-fossil carbon and marine organic matter. In the upper Gaoping Canyon, sedimentation is dominated by the highly-localised hyperpycnal input of river washload and submarine sediment slumps, each associated with extensive flooding following Typhoon Morakot, whilst the shelf experienced deposition and reworking of hemi-pelagic marine sediments. A terrestrial signal is also found in the core-top of a fine-grained shelf sample over 20 km from the Gaoping Canyon, in a region normally dominated by marine carbon deposition, showing that Morakot was an unusually large flood event. Conversely, sediment from just above the canyon thalweg contains 0.23 wt.% depth-averaged marine organic carbon (37% of the TOC content) implying that terrestrial OC-dominated turbidites are tightly constrained within the canyon. Hyperpycnal processes can lead to the rapid and efficient transport of both terrestrial and submarine sediments to more permanent burial locations.RS was supported by an Engineering and Physical Sciences Research Council (EP/P502365/1 and EP/P504120/1) studentship. JTL was supported by grant number NSC95-2745-M-110-001 for the Fate of Terrestrial–Nonterrestrial Sediments in High Yield Particle–Export River–Sea Systems Program, which provided the cores in this study. We thank Peter Talling for his insightful and constructive comments on the manuscript and a further, anonymous reviewer for generous endorsement
    • …
    corecore