1,019 research outputs found
Detailed balance condition and ultraviolet stability of scalar field in Horava-Lifshitz gravity
Detailed balance and projectability conditions are two main assumptions when
Horava recently formulated his theory of quantum gravity - the Horava-Lifshitz
(HL) theory. While the latter represents an important ingredient, the former
often believed needs to be abandoned, in order to obtain an ultraviolet stable
scalar field, among other things. In this paper, because of several attractive
features of this condition, we revisit it, and show that the scalar field can
be stabilized, if the detailed balance condition is allowed to be softly
broken. Although this is done explicitly in the non-relativistic general
covariant setup of Horava-Melby-Thompson with an arbitrary coupling constant
, generalized lately by da Silva, it is also true in other versions of
the HL theory. With the detailed balance condition softly breaking, the number
of independent coupling constants can be still significantly reduced. It is
remarkable to note that, unlike other setups, in this da Silva generalization,
there exists a master equation for the linear perturbations of the scalar field
in the flat Friedmann-Robertson-Walker background.Comment: Some typos are corrected. To appear in JCA
Improved coloration of hemp fabrics via low-pressure argon plasma assisted surface modification
Interest in hemp as a viable cellulosic fibre for clothing has increased, driven partly by its economic benefits and the importance of natural renewable materials in emerging circular economies. However, the coloration and chemical finishing of lignocellulosic fibres such as hemp typically require large quantities of water and chemicals. Argon plasma pretreatment provides a way of modulating the physical properties of hemp fibres to improve the coloration process without compromising other bulk properties such as tensile strength. Such plasma treatments may contribute to alleviating the negative environmental impacts associated with liquid pretreatments, heating, or the use of auxiliary chemicals. Dyeing of hemp fibres is particularly challenging due to its crystalline chemical structure. In this study, low-pressure argon plasma-assisted surface modification of woven hemp fabrics up to 600 s at 40 and 80 Hz was explored for enhanced dyeability, resulting in enhanced dye-fibre bonding. Fourier-transform infrared spectroscopy and Raman spectroscopy of argon plasma pretreated hemp fabrics produced no noticeable changes in the functional groups of the fibres, but a physiochemical modification was observed in terms of the density of polar groups. Scanning electron microscopy (SEM) images revealed marked morphological changes including nano-etching of the fibre surface at certain argon plasma process conditions. The pretreatment process increased fibre hydrophilicity, and enhanced reactivity of the surficial –OH groups towards fibre-reactive and vat dyes, resulting in higher colour strength in dyed woven hemp fabrics. Overall, we envisage such plasma pretreatments may impact positively on the material and energy efficiency of the hemp fabric dyeing process
On the origin of the A and B electronic Raman scattering peaks in the superconducting state of YBaCuO
The electronic Raman scattering has been investigated in optimally oxygen
doped YBaCuO single crystals as well as in crystals
with non-magnetic, Zn, and magnetic, Ni, impurities. We found that the
intensity of the A peak is impurity independent and their energy to
ratio is almost constant (). Moreover, the
signal at the B channel is completely smeared out when non-magnetic Zn
impurities are present. These results are qualitatively interpreted in terms of
the Zeyher and Greco's theory that relates the electronic Raman scattering in
the A and B channels to \textit{d}-CDW and superconducting order
parameters fluctuations, respectively.Comment: Submited to Phys. Rev. Let
Alkali doping leads to charge-transfer salt formation in a two-dimensional metal–organic framework
Efficient charge transfer across metal–organic interfaces is a key physical process in modern organic electronics devices, and characterization of the energy level alignment at the interface is crucial to enable a rational device design. We show that the insertion of alkali atoms can significantly change the structure and electronic properties of a metal–organic interface. Coadsorption of tetracyanoquinodimethane (TCNQ) and potassium on a Ag(111) surface leads to the formation of a two-dimensional charge transfer salt, with properties quite different from those of the two-dimensional Ag adatom TCNQ metal–organic framework formed in the absence of K doping. We establish a highly accurate structural model by combination of quantitative X-ray standing wave measurements, scanning tunnelling microscopy, and density-functional theory (DFT) calculations. Full agreement between the experimental data and the computational prediction of the structure is only achieved by inclusion of a charge-transfer-scaled dispersion correction in the DFT, which correctly accounts for the effects of strong charge transfer on the atomic polarizability of potassium. The commensurate surface layer formed by TCNQ and K is dominated by strong charge transfer and ionic bonding and is accompanied by a structural and electronic decoupling from the underlying metal substrate. The consequence is a significant change in energy level alignment and work function compared to TCNQ on Ag(111). Possible implications of charge-transfer salt formation at metal–organic interfaces for organic thin-film devices are discussed
Spin Transport in Two Dimensional Hopping Systems
A two dimensional hopping system with Rashba spin-orbit interaction is
considered. Our main interest is concerned with the evolution of the spin
degree of freedom of the electrons. We derive the rate equations governing the
evolution of the charge density and spin polarization of this system in the
Markovian limit in one-particle approximation. If only two-site hopping events
are taken into account, the evolution of the charge density and of the spin
polarization is found to be decoupled. A critical electric field is found,
above which oscillations are superimposed on the temporal decay of the total
polarization. A coupling between charge density and spin polarization occurs on
the level of three-site hopping events. The coupling terms are identified as
the anomalous Hall effect and the recently proposed spin Hall effect. Thus, an
unpolarized charge current through a sheet of finite width leads to a
transversal spin accumulation in our model system.Comment: 15 pages, 3 figure
- …