107 research outputs found
Warm Water and Cool Nests Are Best. How Global Warming Might Influence Hatchling Green Turtle Swimming Performance
For sea turtles nesting on beaches surrounded by coral reefs, the most important element of hatchling recruitment is escaping predation by fish as they swim across the fringing reef, and as a consequence hatchlings that minimize their exposure to fish predation by minimizing the time spent crossing the fringing reef have a greater chance of surviving the reef crossing. One way to decrease the time required to cross the fringing reef is to maximize swimming speed. We found that both water temperature and nest temperature influence swimming performance of hatchling green turtles, but in opposite directions. Warm water increases swimming ability, with hatchling turtles swimming in warm water having a faster stroke rate, while an increase in nest temperature decreases swimming ability with hatchlings from warm nests producing less thrust per stroke
Chemical Contamination of Green Turtle (Chelonia mydas) Eggs in Peninsular Malaysia: Implications for Conservation and Public Health
BACKGROUND: Persistent organic pollutants (POPs)-such as organochlorine pesticides (OCPS), polychlorinated biphenyls (PCBs), and polybrominated diphenyl ethers (PBDEs)-and heavy metals have been reported in sea turtles at various stages of their life cycle. These chemicals can disrupt development and function of wildlife. Furthermore, in areas such as Peninsular Malaysia, where the human consumption of sea turtle eggs is prevalent, egg contamination may also have public health implications. OBJECTIVE: In the present study we investigated conservation and human health risks associated with the chemical contamination of green turtle (Chelonia mydas) eggs in Peninsular Malaysia. METHODS: Fifty-five C mydas eggs were collected from markets in Peninsular Malaysia and analyzed for POPs and heavy metals. We conducted screening risk assessments (SRAs) and calculated the percent of acceptable daily intake (ADI) for POPs and metals to assess conservation and human health risks associated with egg contamination. RESULTS: C mydas eggs were available in 9 of the 33 markets visited. These eggs came from seven nesting areas from as far away as Borneo Malaysia. SRAs indicated a significant risk to embryonic development associated with the observed arsenic concentrations. Furthermore, the concentrations of coplanar PCBs represented 3-300 times the ADI values set by the World Health Organization. CONCLUSIONS: The concentrations of POPs and heavy metals reported in C mydas eggs from markets in Peninsular Malaysia pose considerable risks to sea turtle conservation and human health
Plastic Pollution and Small Juvenile Marine Turtles: A Potential Evolutionary Trap
The ingestion of plastic by marine turtles is now reported for all species. Small juvenile turtles (including post-hatchling and oceanic juveniles) are thought to be most at risk,
due to feeding preferences and overlap with areas of high plastic abundance. Their remote and dispersed life stage, however, results in limited access and assessments.
Here, stranded and bycaught specimens from Queensland Australia, Pacific Ocean (PO;n = 65; 1993–2019) and Western Australia, Indian Ocean (IO; n = 56; 2015–2019) provide a unique opportunity to assess the extent of plastic (> 1mm) ingestion in five species [green (Chelonia mydas), loggerhead (Caretta caretta), hawksbill (Eretmochelys imbricata), olive ridley (Lepidochelys olivacea), and flatback turtles (Natator depressus)]. In the Pacific Ocean, high incidence of ingestion occurred in green (83%; n = 36), loggerhead (86%; n = 7), flatback (80%; n = 10) and olive ridley turtles (29%; n = 7).
There was an overall lower incidence in IO; highest being in the flatback (28%; n = 18), the loggerhead (21%; n = 14) and green (9%; n = 22). No macroplastic debris ingestion
was documented for hawksbill turtles in either site although sample sizes were smaller for this species (PO n = 5; IO n = 2). In the Pacific Ocean, the majority of ingested debris
was made up of hard fragments (mean of all species 52%; species averages 46–97%), whereas for the Indian Ocean these were filamentous plastics (52%; 43–77%). The most abundant colour for both sites across all species was clear (PO: 36%; IO: 39%), followed by white for PO (36%) then green and blue for IO (16%; 16%). The polymers most commonly ingested by turtles in both oceans were polyethylene (PE; PO-58%;
IO-39%) and polypropylene (PP; PO-20.2%; IO-23.5%). We frame the high occurrence of ingested plastic present in this marine turtle life stage as a potential evolutionary trap as they undertake their development in what are now some of the most polluted areas of the global oceans
Biochemical indices and life traits of loggerhead turtles (Caretta caretta) from Cape Verde Islands
The loggerhead turtle (Caretta caretta) is an endangered marine reptile for whom assessing population health requires
knowledge of demographic parameters such as individual growth rate. In Cape Verde, as within several populations, adult
female loggerhead sea turtles show a size-related behavioral and trophic dichotomy. While smaller females are associated
with oceanic habitats, larger females tend to feed in neritic habitats, which is reflected in their physiological condition and in
their offspring. The ratio of RNA/DNA provides a measure of cellular protein synthesis capacity, which varies depending on
changes in environmental conditions such as temperature and food availability. The purpose of this study was to evaluate
the combined use of morphometric data and biochemical indices as predictors of the physiological condition of the females
of distinct sizes and hatchlings during their nesting season and how temperature may influence the physiological condition
on the offspring. Here we employed biochemical indices based on nucleic acid derived indices (standardized RNA/DNA
ratio-sRD, RNA concentration and DNA concentration) in skin tissue as a potential predictor of recent growth rate in nesting
females and hatchling loggerhead turtles. Our major findings were that the physiological condition of all nesting females
(sRD) decreased during the nesting season, but that females associated with neritic habitats had a higher physiological
condition than females associated with oceanic habitats. In addition, the amount of time required for a hatchling to right
itself was negatively correlated with its physiological condition (sRD) and shaded nests produced hatchlings with lower sRD.
Overall, our results showed that nucleic acid concentrations and ratios of RNA to DNA are an important tool as potential
biomarkers of recent growth in marine turtles. Hence, as biochemical indices of instantaneous growth are likely
temperature-, size- and age-dependent, the utility and validation of these indices on marine turtles stocks deserves further
study.The authors thank the Cape Verde Ministry of Environment (General Direction for the Environment), INDP (National Fisheries Institution), the Canary
Islands Government (D.G. Africa and D.G. Research and Universities), ICCM (Canarian Institution for Marine Sciences), the Andalusian Government (Andalusian
Environmental Office) and AEGINA PROJECT (INTERREG IIIB) for funding and hosting them during this study. The authors also thank the European Regional
Development Fund (ERDF) through the COMPETE - Operational Competitiveness Programme, and national funds through FCT - PEst-C/MAR/LA0015/2011 for
supporting the biochemical analysis
Regional Management Units for Marine Turtles: A Novel Framework for Prioritizing Conservation and Research across Multiple Scales
Background: Resolving threats to widely distributed marine megafauna requires definition of the geographic distributions of both the threats as well as the population unit(s) of interest. In turn, because individual threats can operate on varying spatial scales, their impacts can affect different segments of a population of the same species. Therefore, integration of multiple tools and techniques - including site-based monitoring, genetic analyses, mark-recapture studies and telemetry - can facilitate robust definitions of population segments at multiple biological and spatial scales to address different management and research challenges. Methodology/Principal Findings: To address these issues for marine turtles, we collated all available studies on marine turtle biogeography, including nesting sites, population abundances and trends, population genetics, and satellite telemetry. We georeferenced this information to generate separate layers for nesting sites, genetic stocks, and core distributions of population segments of all marine turtle species. We then spatially integrated this information from fine-to coarse-spatial scales to develop nested envelope models, or Regional Management Units (RMUs), for marine turtles globally. Conclusions/Significance: The RMU framework is a solution to the challenge of how to organize marine turtles into units of protection above the level of nesting populations, but below the level of species, within regional entities that might be on independent evolutionary trajectories. Among many potential applications, RMUs provide a framework for identifying data gaps, assessing high diversity areas for multiple species and genetic stocks, and evaluating conservation status of marine turtles. Furthermore, RMUs allow for identification of geographic barriers to gene flow, and can provide valuable guidance to marine spatial planning initiatives that integrate spatial distributions of protected species and human activities. In addition, the RMU framework - including maps and supporting metadata - will be an iterative, user-driven tool made publicly available in an online application for comments, improvements, download and analysis
A comparison of the seasonal movements of tiger sharks and green turtles provides insight into their predator-prey relationship
During the reproductive season, sea turtles use a restricted area in the vicinity of their nesting beaches, making them vulnerable to predation. At Raine Island (Australia), the highest density green turtle Chelonia mydas rookery in the world, tiger sharks Galeocerdo cuvier have been observed to feed on green turtles, and it has been suggested that they may specialise on such air-breathing prey. However there is little information with which to examine this hypothesis. We compared the spatial and temporal components of movement behaviour of these two potentially interacting species in order to provide insight into the predator-prey relationship. Specifically, we tested the hypothesis that tiger shark movements are more concentrated at Raine Island during the green turtle nesting season than outside the turtle nesting season when turtles are not concentrated at Raine Island. Turtles showed area-restricted search behaviour around Raine Island for ~3–4 months during the nesting period (November–February). This was followed by direct movement (transit) to putative foraging grounds mostly in the Torres Straight where they switched to area-restricted search mode again, and remained resident for the remainder of the deployment (53–304 days). In contrast, tiger sharks displayed high spatial and temporal variation in movement behaviour which was not closely linked to the movement behaviour of green turtles or recognised turtle foraging grounds. On average, tiger sharks were concentrated around Raine Island throughout the year. While information on diet is required to determine whether tiger sharks are turtle specialists our results support the hypothesis that they target this predictable and plentiful prey during turtle nesting season, but they might not focus on this less predictable food source outside the nesting season
Global Conservation Priorities for Marine Turtles
Where conservation resources are limited and conservation targets are diverse, robust yet flexible priority-setting frameworks are vital. Priority-setting is especially important for geographically widespread species with distinct populations subject to multiple threats that operate on different spatial and temporal scales. Marine turtles are widely distributed and exhibit intra-specific variations in population sizes and trends, as well as reproduction and morphology. However, current global extinction risk assessment frameworks do not assess conservation status of spatially and biologically distinct marine turtle Regional Management Units (RMUs), and thus do not capture variations in population trends, impacts of threats, or necessary conservation actions across individual populations. To address this issue, we developed a new assessment framework that allowed us to evaluate, compare and organize marine turtle RMUs according to status and threats criteria. Because conservation priorities can vary widely (i.e. from avoiding imminent extinction to maintaining long-term monitoring efforts) we developed a “conservation priorities portfolio” system using categories of paired risk and threats scores for all RMUs (n = 58). We performed these assessments and rankings globally, by species, by ocean basin, and by recognized geopolitical bodies to identify patterns in risk, threats, and data gaps at different scales. This process resulted in characterization of risk and threats to all marine turtle RMUs, including identification of the world's 11 most endangered marine turtle RMUs based on highest risk and threats scores. This system also highlighted important gaps in available information that is crucial for accurate conservation assessments. Overall, this priority-setting framework can provide guidance for research and conservation priorities at multiple relevant scales, and should serve as a model for conservation status assessments and priority-setting for widespread, long-lived taxa
Green and hawksbill turtles in the Lesser Antilles demonstrate behavioural plasticity in inter-nesting behaviour and post-nesting migration
Satellite transmitters were deployed on three green turtles, Chelonia mydas, and two hawksbill turtles, Eretmochelys imbricata, nesting in the Lesser Antilles islands, Caribbean, between 2005-2007 to obtain preliminary information about the inter-nesting, migratory and foraging habitats in the region. Despite the extremely small dataset, both year-round residents and migrants were identified; specifically (1) two green turtles used local shallow coastal sites within 50 km of the nesting beach during all of their inter-nesting periods and then settled at these sites on completion of their breeding seasons, (2) one hawksbill turtle travelled 200 km westward before reversing direction and settling within 50 km of the original nesting beach and (3) one green and one hawksbill turtle initially nested at the proximate site, before permanently relocating to an alternative nesting site over 190 km distant. A lack of nesting beach fidelity was supported by flipper tag datasets for the region. Tagging datasets from 2002-2012 supported that some green and hawksbill individuals exhibit low fidelity to nesting beaches, whereas other females exhibited a high degree of fidelity (26 turtles tagged, 40.0km maximum distance recorded from original nesting beach). Individual turtles nesting on St Eustatius and St Maarten appear to exhibit behavioural plasticity in their inter-nesting behaviour and post-nesting migration routes in the Eastern Caribbean. The tracking and tagging data combined indicate that some of the green and hawksbill females that nest in the Lesser Antilles Islands are year-round residents, while others may nest and forage at alternative sites. Thus, continued year-round protection of these islands and implementation of protection programmes in nearby islands could contribute towards safeguarding the green and hawksbill populations of the region
The Role of Turtles as Coral Reef Macroherbivores
Herbivory is widely accepted as a vital function on coral reefs. To date, the majority of studies examining herbivory in coral reef environments have focused on the roles of fishes and/or urchins, with relatively few studies considering the potential role of macroherbivores in reef processes. Here, we introduce evidence that highlights the potential role of marine turtles as herbivores on coral reefs. While conducting experimental habitat manipulations to assess the roles of herbivorous reef fishes we observed green turtles (Chelonia mydas) and hawksbill turtles (Eretmochelys imbricata) showing responses that were remarkably similar to those of herbivorous fishes. Reducing the sediment load of the epilithic algal matrix on a coral reef resulted in a forty-fold increase in grazing by green turtles. Hawksbill turtles were also observed to browse transplanted thalli of the macroalga Sargassum swartzii in a coral reef environment. These responses not only show strong parallels to herbivorous reef fishes, but also highlight that marine turtles actively, and intentionally, remove algae from coral reefs. When considering the size and potential historical abundance of marine turtles we suggest that these potentially valuable herbivores may have been lost from many coral reefs before their true importance was understood
Diel and seasonal patterns in activity and home range size of green turtles on their foraging grounds revealed by extended Fastloc-GPS tracking
An animal’s home range is driven by a range of factors including top-down (predation risk) and bottom-up (habitat quality) processes, which often vary in both space and time. We assessed the role of these processes in driving spatiotemporal patterns in the home range of the green turtle (Chelonia mydas), an important marine megaherbivore. We satellite tracked adult green turtles using Fastloc-GPS telemetry in the Chagos Archipelago and tracked their fine-scale movement in different foraging areas in the Indian Ocean. Using this extensive data set (5,081 locations over 1,675 tracking days for 8 individuals) we showed that green turtles exhibit both diel and seasonal patterns in activity and home range size. At night, turtles had smaller home ranges and lower activity levels, suggesting they were resting. In the daytime, home ranges were larger and activity levels higher, indicating that turtles were actively feeding. The transit distance between diurnal and nocturnal sites varied considerably between individuals. Further, some turtles changed resting and foraging sites seasonally. These structured movements indicate that turtles had a good understanding of their foraging grounds in regards to suitable areas for foraging and sheltered areas for resting. The clear diel patterns and the restricted size of nocturnal sites could be caused by spatiotemporal variations in predation risk, although other factors (e.g. depth, tides and currents) could also be important. The diurnal and seasonal pattern in home range sizes could similarly be driven by spatiotemporal variations in habitat (e.g. seagrass or algae) quality, although this could not be confirmed
- …