11 research outputs found

    Vortex Sheet Sensitivity to Low-Level Vertical Shear and Airmass Temperature Perturbation

    Get PDF
    A theoretical, numerical-modeling-based examination of the sensitivity of vortex sheets along airmass boundaries to the following three characteristics is presented: 1) boundary-normal component of the vertical wind shear, 2) boundary-parallel component of the vertical wind shear, and 3) temperature perturbation within the parent air mass of the boundary. The overall aim of this work is to advance understanding of the sensitivity of micro-α- tomeso-γ-scale vortex generation along airmass boundaries to the ambient environment. Density currents are simulated in a 2D domain that does not allow baroclinic generation of near-surface vertical vorticity (ζns) with parameterized latent heating for convection initiated at the associated airmass boundary and Coriolis turned on. Despite the absence of baroclinically generated ζns, with Coriolis turned on and without any boundary-parallel shear, ζns more than two orders of magnitude larger than planetary vorticity is generated along the boundary and located within the cold air. The magnitude of ζns is found to increase with increasing boundary-normal shear with statistically significant intra-experiment separations. Near-surface vertical vorticity ζns is found to scale inversely with boundary-parallel shear with a transition to negative leading-edge ζns in several of the larger boundary-normal shear simulations. An inverse and statistically significant relationship is found between ζns and the temperature perturbation within the parent air mass of the boundary (Δθ), and is a direct consequence of the dependence of boundary propagation speed on Δθ

    Thunderstorm Observation by Radar (ThOR): An Algorithm to Develop a Climatology of Thunderstorms

    Get PDF
    The Thunderstorm Observation by Radar (ThOR) algorithm is an objective and tunable Lagrangian approach to cataloging thunderstorms. ThOR uses observations from multiple sensors (principally multisite surveillance radar data and cloud-to-ground lightning) along with established techniques for fusing multisite radar data and identifying spatially coherent regions of radar reflectivity (clusters) that are subsequently tracked using a new tracking scheme. The main innovation of the tracking algorithm is that, by operating offline, the full data record is available, not just previous cluster positions, so all possible combinations of object sequences can be developed using all observed object positions. In contrast to Eulerian methods reliant on thunder reports, ThOR is capable of cataloging nearly every thunderstorm that occurs over regional-scale and continental United States (CONUS)-scale domains, thereby enabling analysis of internal properties and trends of thunderstorms. ThOR is verified against 166 manually analyzed cluster tracks and is also verified using descriptive statistics applied to a large (~35 000 tracks) sample. Verification also relied on a benchmark tracking algorithm that provides context for the verification statistics. ThOR tracks are shown to match the manual tracks slightly better than the benchmark tracks. Moreover, the descriptive statistics of the ThOR tracks are nearly identical to those of the manual tracks, suggesting good agreement. When the descriptive statistics were applied to the ~35 000-track dataset, ThOR tracking produces longer (statistically significant), straighter, and more coherent tracks than those of the benchmark algorithm. Qualitative assessment of ThOR performance is enabled through application to a multiday thunderstorm event and comparison to the behavior of the Storm Cell Identification and Tracking (SCIT) algorithm

    Ensemble Sensitivity Analysis for Targeted Observations of Supercell Thunderstorms

    Get PDF
    Ensemble sensitivity analysis (ESA) has been demonstrated for observation targeting of synoptic-scale and mesoscale phenomena, but could have similar applications for storm-scale observations with mobile platforms. This paper demonstrates storm-scale ESA using an idealized supercell simulated with a 101-member CM1 ensemble. Correlation coefficients are used as a measure of sensitivity and are derived from single-variable and multivariable linear regressions of pressure, temperature, humidity, and wind with forecast response variables intended as proxies for the strength of supercells. This approach is suitable for targeting observing platforms that simultaneously measure multiple base-state variables. Although the individual correlations are found to be noisy and difficult to interpret, averaging across small areas of the domain and over the duration of the simulation is found to simplify the analysis. However, it is difficult to identify physically meaningful results from the sensitivity calculations, and evaluation of the results suggests that the overall skill would be low in targeting observations at the storm scale solely based on these sensitivity calculations. The difficulty in applying ESA at the scale of an individual supercell is likely due to applying the linear model to an environment with highly nonlinear dynamics, rapidly changing forecast metrics, and autocorrelation

    An Object-Oriented Multiscale Verification Scheme

    Get PDF
    Object-oriented verification methodology is becoming more and more common in the evaluation of model performance on high-resolution grids. The research herein describes an advanced version of an object-oriented approach that involves a combination of object identification on multiple scales with Procrustes shape analysis techniques. The multiscale object identification technique relies heavily on a novel Fourier transform approach to associate the signals within convection to different spatial scales. Other features of this new verification scheme include using a weighted cost function that can be user defined for object matching using different criteria, delineating objects that are more linear in character from those that are more cellular, and tagging object matches as hits, misses, or false alarms. Although the scheme contains a multiscale approach for identifying convective objects, standard minimum intensity and minimum size thresholds can be set when desirable. The method was tested as part of a spatial verification intercomparison experiment utilizing a combination of synthetic data and real cases from the Storm Prediction Center (SPC)/NSSL Weather Research and Forecasting (WRF) model Spring Program 2005. The resulting metrics, including error measures from differences in matched objects due to displacement, dilation, rotation, and intensity, from these cases run through this new, robust verification scheme are shown

    Ensemble Sensitivity Analysis for Targeted Observations of Supercell Thunderstorms

    No full text
    Ensemble sensitivity analysis (ESA) has been demonstrated for observation targeting of synoptic-scale and mesoscale phenomena, but could have similar applications for storm-scale observations with mobile platforms. This paper demonstrates storm-scale ESA using an idealized supercell simulated with a 101-member CM1 ensemble. Correlation coefficients are used as a measure of sensitivity and are derived from single-variable and multivariable linear regressions of pressure, temperature, humidity, and wind with forecast response variables intended as proxies for the strength of supercells. This approach is suitable for targeting observing platforms that simultaneously measure multiple base-state variables. Although the individual correlations are found to be noisy and difficult to interpret, averaging across small areas of the domain and over the duration of the simulation is found to simplify the analysis. However, it is difficult to identify physically meaningful results from the sensitivity calculations, and evaluation of the results suggests that the overall skill would be low in targeting observations at the storm scale solely based on these sensitivity calculations. The difficulty in applying ESA at the scale of an individual supercell is likely due to applying the linear model to an environment with highly nonlinear dynamics, rapidly changing forecast metrics, and autocorrelation

    Thunderstorm Observation by Radar (ThOR): An Algorithm to Develop a Climatology of Thunderstorms

    Get PDF
    The Thunderstorm Observation by Radar (ThOR) algorithm is an objective and tunable Lagrangian approach to cataloging thunderstorms. ThOR uses observations from multiple sensors (principally multisite surveillance radar data and cloud-to-ground lightning) along with established techniques for fusing multisite radar data and identifying spatially coherent regions of radar reflectivity (clusters) that are subsequently tracked using a new tracking scheme. The main innovation of the tracking algorithm is that, by operating offline, the full data record is available, not just previous cluster positions, so all possible combinations of object sequences can be developed using all observed object positions. In contrast to Eulerian methods reliant on thunder reports, ThOR is capable of cataloging nearly every thunderstorm that occurs over regional-scale and continental United States (CONUS)-scale domains, thereby enabling analysis of internal properties and trends of thunderstorms. ThOR is verified against 166 manually analyzed cluster tracks and is also verified using descriptive statistics applied to a large (~35 000 tracks) sample. Verification also relied on a benchmark tracking algorithm that provides context for the verification statistics. ThOR tracks are shown to match the manual tracks slightly better than the benchmark tracks. Moreover, the descriptive statistics of the ThOR tracks are nearly identical to those of the manual tracks, suggesting good agreement. When the descriptive statistics were applied to the ~35 000-track dataset, ThOR tracking produces longer (statistically significant), straighter, and more coherent tracks than those of the benchmark algorithm. Qualitative assessment of ThOR performance is enabled through application to a multiday thunderstorm event and comparison to the behavior of the Storm Cell Identification and Tracking (SCIT) algorithm
    corecore