453 research outputs found

    Public key encryption with keyword search secure against keyword guessing attacks without random oracle

    Get PDF
    The notion of public key encryption with keyword search (PEKS) was put forth by Boneh et al. to enable a server to search from a collection of encrypted emails given a “trapdoor” (i.e., an encrypted keyword) provided by the receiver. The nice property in this scheme allows the server to search for a keyword, given the trapdoor. Hence, the verifier can merely use an untrusted server, which makes this notion very practical. Following Boneh et al.’s work, there have been subsequent works that have been proposed to enhance this notion. Two important notions include the so-called keyword guessing attack and secure channel free, proposed by Byun et al. and Baek et al., respectively. The former realizes the fact that in practice, the space of the keywords used is very limited, while the latter considers the removal of secure channel between the receiver and the server to make PEKS practical. Unfortunately, the existing construction of PEKS secure against keyword guessing attack is only secure under the random oracle model, which does not reflect its security in the real world. Furthermore, there is no complete definition that captures secure channel free PEKS schemes that are secure against chosen keyword attack, chosen ciphertext attack, and against keyword guessing attacks, even though these notions seem to be the most practical application of PEKS primitives. In this paper, we make the following contributions. First, we define the strongest model of PEKS which is secure channel free and secure against chosen keyword attack, chosen ciphertext attack, and keyword guessing attack. In particular, we present two important security notions namely IND-SCF-CKCA and IND-KGA. The former is to capture an inside adversary, while the latter is to capture an outside adversary. Intuitively, it should be clear that IND-SCF-CKCA captures a more stringent attack compared to IND-KGA. Second, we present a secure channel free PEKS scheme secure without random oracle under the well known assumptions, namely DLP, DBDH, SXDH and truncated q-ABDHE assumption. Our contributions fill the gap in the literature and hence, making the notion of PEK

    High-throughput phenotyping of plant leaf morphological, physiological, and biochemical traits on multiple scales using optical sensing

    Get PDF
    Acquisition of plant phenotypic information facilitates plant breeding, sheds light on gene action, and can be applied to optimize the quality of agricultural and forestry products. Because leaves often show the fastest responses to external environmental stimuli, leaf phenotypic traits are indicators of plant growth, health, and stress levels. Combination of new imaging sensors, image processing, and data analytics permits measurement over the full life span of plants at high temporal resolution and at several organizational levels from organs to individual plants to field populations of plants. We review the optical sensors and associated data analytics used for measuring morphological, physiological, and biochemical traits of plant leaves on multiple scales. We summarize the characteristics, advantages and limitations of optical sensing and data-processing methods applied in various plant phenotyping scenarios. Finally, we discuss the future prospects of plant leaf phenotyping research. This review aims to help researchers choose appropriate optical sensors and data processing methods to acquire plant leaf phenotypes rapidly, accurately, and cost-effectively

    Intelligent Exploration for User Interface Modules of Mobile App with Collective Learning

    Full text link
    A mobile app interface usually consists of a set of user interface modules. How to properly design these user interface modules is vital to achieving user satisfaction for a mobile app. However, there are few methods to determine design variables for user interface modules except for relying on the judgment of designers. Usually, a laborious post-processing step is necessary to verify the key change of each design variable. Therefore, there is a only very limited amount of design solutions that can be tested. It is timeconsuming and almost impossible to figure out the best design solutions as there are many modules. To this end, we introduce FEELER, a framework to fast and intelligently explore design solutions of user interface modules with a collective machine learning approach. FEELER can help designers quantitatively measure the preference score of different design solutions, aiming to facilitate the designers to conveniently and quickly adjust user interface module. We conducted extensive experimental evaluations on two real-life datasets to demonstrate its applicability in real-life cases of user interface module design in the Baidu App, which is one of the most popular mobile apps in China.Comment: 10 pages, accepted as a full paper in KDD 202

    A Mid-infrared Flare in the Active Galaxy MCG-02-04-026: Dust Echo of a Nuclear Transient Event

    Get PDF
    We report the discovery of a mid-infrared (MIR) flare using Wide field Infrared Survey Explorer data in the center of the nearby Seyfert 1.9 galaxy MCG-02-04-026. The MIR flare began in the first half of 2014, peaked around the end of 2015, and faded in 2017. During these years, energy of more than 7 × 10⁵⁰ erg was released in the infrared, and the flare's MIR color was generally turning red. We detected neither optical nor ultraviolet (UV) variation corresponding to the MIR flare based on available data. We explained the MIR flare using a dust echo model in which the radiative transfer is involved. The MIR flare can be well explained as thermal reradiation from dust heated by UV–optical photons of a primary nuclear transient event. Although the transient event was not seen directly owing to dust obscuration, we can infer that it may produce a total energy of at least ~10⁵¹ erg, most of which was released in less than ~3 yr. The nature of the transient event could be a stellar tidal disruption event by the central supermassive black hole (SMBH), or a sudden enhancement of the existing accretion flow onto the SMBH, or a supernova that was particularly bright

    A Mid-infrared Flare in the Active Galaxy MCG-02-04-026: Dust Echo of a Nuclear Transient Event

    Get PDF
    We report the discovery of a mid-infrared (MIR) flare using WISE data in the center of the nearby Seyfert 1.9 galaxy MCG-02-04-026. The MIR flare began in the first half of 2014, peaked around the end of 2015, and faded in 2017. During these years, energy more than 7×10507\times10^{50} erg was released in the infrared, and the flare's MIR color was generally turning red. We detected neither optical nor ultraviolet (UV) variation corresponding to the MIR flare based on available data. We explained the MIR flare using a dust echo model in which the radiative transfer is involved. The MIR flare can be well explained as thermal reradiation from dust heated by UV-optical photons of a primary nuclear transient event. Although the transient event was not seen directly due to dust obscuration, we can infer that it may produce a total energy of at least 1051\sim10^{51} erg, most of which was released in less than \sim3 years. The nature of the transient event could be a stellar tidal disruption event by the central supermassive black hole (SMBH), or a sudden enhancement of the existing accretion flow onto the SMBH, or a supernova which was particularly bright.Comment: 44 pages, 13 figures; Accepted to be published in Ap

    Double optimal density gradients for harmonic generation from relativistically oscillating plasma surfaces

    Get PDF
    The influence of plasma density gradients on the harmonic generation process from relativistically oscillating mirror (ROM) is studied experimentally. It is observed that the harmonic intensities from orders of 21 st to 24 th first drop and then reach the maximum value with the increase of plasma scale length L. 2D particle-in-cell simulations are performed to investigate the intensities of high-order harmonics at different L values, which show that there are two optimal scale lengths Lopt for efficient ROM harmonic generation. The two optimal Lopt values are interpreted by a quasi-1D analytical model. By matching the potential energies provided by laser pulse and charge displacement in the plasma with an exponential distributed density profile, the model can quantitatively predict the optimal Lopt at the given laser incidence angle and intensity. Our work is beneficial for better understanding the role of L in ROM harmonic generation and the parameters affecting the optimal Lop
    corecore