405 research outputs found
Familial thymic aplasia - Attempted reconstitution with fetal thymus in a Millipore diffusion chamber
A 10-week-old female infant with familial congenital thymic aplasia without delayed hypersensitivity to common skin-test antigens underwent fetal-thymus implantation. Six hours after the implantation of a fetal thymus enclosed in a Millipore chamber phytohemagglutinin responsiveness was demonstrable in the patient's peripheral lymphocytes. The infant's death of aspiration pneumonia nine days after implantation did not allow evaluation of the extent of the immunologic reconstitution. Thymic-cell immunologic function can be induced in man with fetal-thymus humoral factors
Accurate delineation of cell cycle phase transitions in living cells with PIP-FUCCI
Cell cycle phase transitions are tightly orchestrated to ensure efficient cell cycle progression and genome stability. Interrogating these transitions is important for understanding both normal and pathological cell proliferation. By quantifying the dynamics of the popular FUCCI reporters relative to the transitions into and out of S phase, we found that their dynamics are substantially and variably offset from true S phase boundaries. To enhance detection of phase transitions, we generated a new reporter whose oscillations are directly coupled to DNA replication and combined it with the FUCCI APC/C reporter to create "PIP-FUCCI". The PIP degron fusion protein precisely marks the G1/S and S/G2 transitions; shows a rapid decrease in signal in response to large doses of DNA damage only during G1; and distinguishes cell type-specific and DNA damage source-dependent arrest phenotypes. We provide guidance to investigators in selecting appropriate fluorescent cell cycle reporters and new analysis strategies for delineating cell cycle transitions
Expanding the scope of density derived electrostatic and chemical charge partitioning to thousands of atoms
The density derived electrostatic and chemical (DDEC/c3) method is implemented into the onetep program to compute net atomic charges (NACs), as well as higher-order atomic multipole moments, of molecules, dense solids, nanoclusters, liquids, and biomolecules using linear-scaling density functional theory (DFT) in a distributed memory parallel computing environment. For a >1000 atom model of the oxygenated myoglobin protein, the DDEC/c3 net charge of the adsorbed oxygen molecule is approximately -1e (in agreement with the Weiss model) using a dynamical mean field theory treatment of the iron atom, but much smaller in magnitude when using the generalized gradient approximation. For GaAs semiconducting nanorods, the system dipole moment using the DDEC/c3 NACs is about 5% higher in magnitude than the dipole computed directly from the quantum mechanical electron density distribution, and the DDEC/c3 NACs reproduce the electrostatic potential to within approximately 0.1 V on the nanorod’s solvent-accessible surface. As examples of conducting materials, we study (i) a 55-atom Pt cluster with an adsorbed CO molecule and (ii) the dense solids Mo2C and Pd3V. Our results for solid Mo2C and Pd3V confirm the necessity of a constraint enforcing exponentially decaying electron density in the tails of buried atoms
Degradabilidade in situ das frações fibrosas da silagem de sorgo.
O objetivo deste experimento foi estudar a degradabilidade in situ e a cinética de degradação da fibra em detergente neutro (FDN) e fibra em detergente ácido (FDA) das silagens de quatro genótipos de sorgo, com presença e ausência de tanino nos grãos. Foi utilizado um delineamento experimental de blocos ao acaso, em esquema de parcelas subdivididas, sendo os animais os blocos, as silagens as parcelas e os tempos de incubação as subparcelas. As médias foram comparadas pelo teste SNK, a 5% de probabilidade. Após 96 horas de incubação, as degradabilidades da FDN e FDA variaram de 32,22 a 56,07% e de 26,40 a 54,40%, para as silagens do BR700 e CMSXS165, respectivamente. A presença de tanino nos grãos comprometeu a degradabilidade ruminal da FDN e FDA das silagens de sorgo
Evidence that the human cell cycle is a series of uncoupled, memoryless phases
The cell cycle is canonically described as a series of four consecutive phases: G1, S, G2, and M. In single cells, the duration of each phase varies, but the quantitative laws that govern phase durations are not well understood. Using time-lapse microscopy, we found that each phase duration follows an Erlang distribution and is statistically independent from other phases. We challenged this observation by perturbing phase durations through oncogene activation, inhibition of DNA synthesis, reduced temperature, and DNA damage. Despite large changes in durations in cell populations, phase durations remained uncoupled in individual cells. These results suggested that the independence of phase durations may arise from a large number of molecular factors that each exerts a minor influence on the rate of cell cycle progression. We tested this model by experimentally forcing phase coupling through inhibition of cyclin-dependent kinase 2 (CDK2) or overexpression of cyclin D. Our work provides an explanation for the historical observation that phase durations are both inherited and independent and suggests how cell cycle progression may be altered in disease states
DNA Methylation of the ABO Promoter Underlies Loss of ABO Allelic Expression in a Significant Proportion of Leukemic Patients
Background: Loss of A, B and H antigens from the red blood cells of patients with myeloid malignancies is a frequent occurrence. Previously, we have reported alterations in ABH antigens on the red blood cells of 55% of patients with myeloid malignancies. Methodology/Principal Findings: To determine the underlying molecular mechanisms of this loss, we assessed ABO allelic expression in 21 patients with ABH antigen loss previously identified by flow cytometric analysis as well as an additional 7 patients detected with ABH antigen changes by serology. When assessing ABO mRNA allelic expression, 6/12 (50%) patients with ABH antigen loss detected by flow cytometry and 5/7 (71%) of the patients with ABH antigen loss detected by serology had a corresponding ABO mRNA allelic loss of expression. We examined the ABO locus for copy number and DNA methylation alterations in 21 patients, 11 with loss of expression of one or both ABO alleles, and 10 patients with no detectable allelic loss of ABO mRNA expression. No loss of heterozygosity (LOH) at the ABO locus was observed in these patients. However in 8/11 (73%) patients with loss of ABO allelic expression, the ABO promoter was methylated compared with 2/10 (20%) of patients with no ABO allelic expression loss (P = 0.03). Conclusions/Significance: We have found that loss of ABH antigens in patients with hematological malignancies is associated with a corresponding loss of ABO allelic expression in a significant proportion of patients. Loss of ABO allelic expression was strongly associated with DNA methylation of the ABO promoter.Tina Bianco-Miotto, Damian J. Hussey, Tanya K. Day, Denise S. O'Keefe and Alexander Dobrovi
Abscess formation of a spherical-shape duplication in the splenic flexure of the colon: case report and review of the literature
Gastrointestinal tract duplications are rare congenital malformations that may occur anywhere in the alimentary tract from the mouth to the anus, and vary greatly in presentation, size, location, and especially in symptoms. We present a case of an infected spherical colonic duplication, in a 20-day-old baby, located at the splenic flexure of the colon. The prominent symptom was acute abdomen, accompanied by bilious vomiting, intestinal obstruction, and high fever. We present this case, due to atypical clinical presentation and the inability of the imaging modality to establish the diagnosis preoperatively
- …