32 research outputs found

    Influence of surface ordering on the wetting of structured liquids

    No full text
    The substrate is shown to induce substantial ordering in diblock copolymer thin films above the bulk order-disorder transition (ODT) where, thermodynamically, a phase mixed state is favored. Initially, uniform films reorganize to form a hierarchy of transient surface patterns and stable film thicknesses that depend on the initial film thickness and on the substrate. Self-consistent field calculations of the free energy of the system for different situations, depending on the relative tendency for the different block components to be attracted to the substrate and/or free surface, provide an explanation of the formation of the stable film thicknesses. A continuum picture proposed earlier by Brochard et al.  provides an explanation of the wetting characteristics of this system. In some cases the ordering destabilizes the film so that dewetting occurs (wetting autophobicity), whereas in other cases the surface ordering results in a kinetic stabilization of a film that would otherwise dewet

    Influence of surface ordering on the wetting of structured liquids

    No full text

    Coarsening dynamics of slipping droplets

    Get PDF
    The late-phase dewetting process of nanoscopic thin polymer films on hydrophobized substrates using some recently derived lubrication models that take account of large slippage at the polymer-substrate interface is studied. The late phase of this process is characterized by the slow-time coarsening dynamics of arrays of droplets that remain after rupture and the initial dewetting phases. For this situation a reduced system of ordinary differential equations is derived from the lubrication model for large slippage using asymptotic analysis. This extends known results for the no-slip case. On the basis of the reduced model, the role of the slippage as a control parameter for droplet migration is analysed and several new qualitative effects for the coarsening process are identified
    corecore