20,749 research outputs found
Gaudin model and its associated Knizhnik-Zamolodchikov equation
The semiclassical limit of the algebraic Bethe Ansatz for the Izergin-Korepin
19-vertex model is used to solve the theory of Gaudin models associated with
the twisted R-matrix. We find the spectra and eigenvectors of the
independents Gaudin Hamiltonians. We also use the off-shell Bethe Ansatz
method to show how the off-shell Gaudin equation solves the associated
trigonometric system of Knizhnik-Zamolodchikov equations.Comment: 20 pages,no figure, typos corrected, LaTe
Irreversible magnetization under rotating fields and lock-in effect on ErBa_2Cu_3O_7 single crystal with columnar defects
We have measured the irreversible magnetization M_i of an ErBa_2Cu_3O_7
single crystal with columnar defects (CD), using a technique based on sample
rotation under a fixed magnetic field H. This method is valid for samples whose
magnetization vector remains perpendicular to the sample surface over a wide
angle range - which is the case for platelets and thin films - and presents
several advantages over measurements of M_L(H) loops at fixed angles. The
resulting M_i(\Theta) curves for several temperatures show a peak in the CD
direction at high fields. At lower fields, a very well defined plateau
indicative of the vortex lock-in to the CD develops. The H dependence of the
lock-in angle \phi_L follows the H^{-1} theoretical prediction, while the
temperature dependence is in agreement with entropic smearing effects
corresponding to short range vortex-defects interactions.Comment: 7 pages, 6 figures, to be published in Phys. Rev.
Studies of the photoionization cross sections of CH_4
We present cross sections and asymmetry parameters for photoionization of the 1t_2 orbital of CH_4 using static‐exchange continuum orbitals of CH^+_4 to represent the photoelectron wave function. The calculations are done in the fixed‐nuclei approximation at a single internuclear geometry. To approximate the near‐threshold behavior of these cross sections, we assumed that the photoelectron spectrum is a composite of three electronic bands associated with the Jahn–Teller components of the distorted ion. The resulting cross sections reproduce the sharp rise seen at threshold in the experimental data and are in good agreement with experiment at higher energy. The agreement between the calculated and measured photoelectron asymmetry parameters is, however, less satisfactory
Thermodynamics of Decaying Vacuum Cosmologies
The thermodynamic behavior of vacuum decaying cosmologies is investigated
within a manifestly covariant formulation. Such a process corresponds to a
continuous irreversible energy flow from the vacuum component to the created
matter constituents. It is shown that if the specific entropy per particle
remains constant during the process, the equilibrium relations are preserved.
In particular, if the vacuum decays into photons, the energy density and
average number density of photons scale with the temperature as and . The temperature law is determined and a generalized
Planckian type form of the spectrum, which is preserved in the course of the
evolution, is also proposed. Some consequences of these results for decaying
vacuum FRW type cosmologies as well as for models with ``adiabatic'' photon
creation are discussed.Comment: 21 pages, uses LATE
Deciphering M-T diagram of shape memory Heusler alloys: reentrance, plateau and beyond
We present our recent results on temperature behaviour of magnetization
observed in Ni_47Mn_39In_14 Heusler alloys. Three regions can be distinguished
in the M-T diagram: (I) low temperature martensitic phase (with the Curie
temperature T_CM = 140 K), (II) intermediate mixed phase (with the critical
temperature T_MS = 230 K) exhibiting a reentrant like behavior (between T_CM
and T_MS) and (III) high temperature austenitic phase (with the Curie
temperature T_CA = 320 K) exhibiting a rather wide plateau region (between T_MS
and T_CA). By arguing that powerful structural transformations, causing drastic
modifications of the domain structure in alloys, would also trigger strong
fluctuations of the order parameters throughout the entire M-T diagram, we were
able to successfully fit all the data by incorporating Gaussian fluctuations
(both above and below the above three critical temperatures) into the
Ginzburg-Landau scenario
Bound vortex states and exotic lattices in multi-component Bose-Einstein condensates: The role of vortex-vortex interaction
We numerically study the vortex-vortex interaction in multi-component
homogeneous Bose-Einstein condensates within the realm of the Gross-Pitaevskii
theory. We provide strong evidences that pairwise vortex interaction captures
the underlying mechanisms which determine the geometric configuration of the
vortices, such as different lattices in many-vortex states, as well as the
bound vortex states with two (dimer) or three (trimer) vortices. Specifically,
we discuss and apply our theoretical approach to investigate intra- and
inter-component vortex-vortex interactions in two- and three-component
Bose-Einstein condensates, thereby shedding light on the formation of the
exotic vortex configurations. These results correlate with current experimental
efforts in multi-component Bose-Einstein condensates, and the understanding of
the role of vortex interactions in multiband superconductors.Comment: Published in PR
New Cosmic Accelerating Scenario without Dark Energy
We propose an alternative, nonsingular, cosmic scenario based on
gravitationally induced particle production. The model is an attempt to evade
the coincidence and cosmological constant problems of the standard model
(CDM) and also to connect the early and late time accelerating stages
of the Universe. Our space-time emerges from a pure initial de Sitter stage
thereby providing a natural solution to the horizon problem. Subsequently, due
to an instability provoked by the production of massless particles, the
Universe evolves smoothly to the standard radiation dominated era thereby
ending the production of radiation as required by the conformal invariance.
Next, the radiation becomes sub-dominant with the Universe entering in the cold
dark matter dominated era. Finally, the negative pressure associated with the
creation of cold dark matter (CCDM model) particles accelerates the expansion
and drives the Universe to a final de Sitter stage. The late time cosmic
expansion history of the CCDM model is exactly like in the standard
CDM model, however, there is no dark energy. This complete scenario is
fully determined by two extreme energy densities, or equivalently, the
associated de Sitter Hubble scales connected by , a result that has no correlation with the cosmological constant
problem. We also study the linear growth of matter perturbations at the final
accelerating stage. It is found that the CCDM growth index can be written as a
function of the growth index, . In this
framework, we also compare the observed growth rate of clustering with that
predicted by the current CCDM model. Performing a statistical test
we show that the CCDM model provides growth rates that match sufficiently well
with the observed growth rate of structure.Comment: 12 pages, 3 figures, accepted for publication by Phys. Rev. D. (final
version, some references have corrected). arXiv admin note: substantial text
overlap with arXiv:1106.193
O ar que respiramos: o que estamos fazendo com o nosso ambiente?
bitstream/item/128276/1/EMA-6-AR.pdfProjeto Minibibliotecas
- …